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Heterogeneous Networks on Multiple Levels

Falk Schreiber, Andreas Kerren, Katy Börner, Hans Hagen, and Dirk Zeckzer

At any moment in time, we are driven by and are an integral part of many
interconnected, dynamically changing networks. Our species has evolved as
part of diverse ecological, biological, social, and other networks over thousands
of years. As part of a complex food web, we learned how to find prey and to
avoid predators. We have created advanced socio-technical environments in
the shape of cities, water and power networks, streets, and airline systems. In
1969, people started to interlink computers leading to the largest and most
widely used networked communication infrastructure in existence today: the
Internet.

Often, the complex structure of networks is influenced by system-dependent
local constraints on the node interconnectivity. Node characteristics may vary
over time and there might be many di↵erent types of nodes. The links1 be-
tween nodes might be directed or undirected, and might have weights and/or
additional properties that might change over time. Many natural systems
never reach a steady state and non-equilibrium models need to be applied to
characterize their behavior.

As a result of this usually domain-specific complexity, analysts are not
only confronted with large multivariate networks. In practice, those networks
can be assigned to di↵erent levels (or scales), and it is absolutely possible that
several di↵erent networks share the same level. In case a set of networks share
the same level, several notions of those networks can be found in the literature:
they reach from multimodal networks, network of networks to heterogeneous
networks. For simplicity, we use the latter term for the remainder of this
chapter.

Complex structures of heterogeneous networks distributed over various
levels lead to considerable visualization and analysis problems. First, the pos-
sibly tremendous size and complexity (in terms of higher dimensionality of
the node/edge attributes) of those networks form a challenge of itself that
is also discussed by other chapters of this book. Second and more impor-

1 We use the terms link and edge interchangeably.
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tant for this chapter, there are versatile relationships between the networks
and/or between network elements across the di↵erent levels. In many appli-
cation fields, it is essential to get a detailed understanding of such structures.
In systems biology, for instance, networks are the key concept to structure
and combine data that was generated by so-called high-throughput analysis
methods. They can be arranged within a hierarchy of levels, from molecular-
biological networks to evolutionary networks. The molecular-biological level,
for example, contains a set of heterogeneous networks such as metabolic and
gene regulatory networks. For a biologist, it is interesting to see how the dif-
ferent elements in those networks are connected with each other. Here, also
multivariate data plays an important role as the network elements carry addi-
tional multidimensional information, such as experimental data that changes
over time.

Fig. 9.1. An overview of the various topics of this chapter. Colors in the top right
part are used to separate di↵erent graphs (e. g., within one level); colors in the
bottom part separate di↵erent levels. Note that some nodes in the upper part have
attached additional attributes symbolized by the small grey data matrix on the right
hand side.
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In terms of visualization, we want to navigate and explore through this
world of networks, and a visualization tool should also provide techniques for
the visual analysis of the multivariate data sets together with the underlying
network topology. The upper part of Fig. 9.1 provides an overview of these
concepts.

Many interactive visualization approaches and tools have been developed
for the visual analysis of graphs/networks; the same is true for the visual-
ization of multivariate data sets. We do not give a comprehensive overview
of the literature here. Instead, we refer to textbooks, such as [38, 69, 70],
surveys [24, 37, 46] and the introduction chapter of this book (Chapter 1).
Note that the given literature references only point to selected example works
and make no claim to be complete. However, a number of visualizations were
especially developed for the analysis of multivariate networks [31]. Some of
them are based on coordinated views, such as Jigsaw [67] or enRoute [56],
others provide integrated solutions, for instance MobiVis [62], GEOMI [17],
Vanted [60], or ViNCent [35, 72], and there are also approaches which realize
so-called attribute-driven topologies like JauntyNets [32] and GraphDice [6].
We refer the reader back to Chapter 1 for a more detailed discussion of existing
directions in multivariate network visualization. To the best of our knowledge
there are no e�cient visualization approaches for heterogeneous networks dis-
tributed over various levels. The aim of this chapter is to formalize and high-
light the underlying problems and challenges by means of three application
domains as well as to propose di↵erent solutions.

The remainder of this chapter is organized as follows: Sect. 9.1 provides
a more formal specification of the data structures used in the chapter. Then,
Sect. 9.2 exemplifies the visualization and analysis challenges by means of
three important application fields: biology, social sciences, and software engi-
neering. As there are almost no e�cient visualization tools for multiple net-
works over levels available, we provide some ideas and visualization challenges
in Sect. 9.3 (cf. the lower part of Fig. 9.1).

9.1 Formal Description of Used Data Structures

In order to facilitate the understanding and description of the following sec-
tions, we introduce a formal specification of the data structures used (a com-
plete data structure sample is shown in Fig. 9.2). For this, let G = (V,E, L)
be a labeled graph with a finite set of nodes2 V = {v1, . . . , vn}, a finite set
of edges E = {(v
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, v
j

)|v
i

, v
j

2 V }, and a finite set of node and edge labels
L = {l1, . . . , lp}. Each node or edge of the graph is required to have a not
necessarily unique label, and l : V,E ! L gives the label for each node or
edge. The label is used to encode a vector of additional node-/edge-specific
data (i. e., the multivariate attributes).

2 Often called vertices; therefore, the variable name v has been established to de-
scribe a node.
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Fig. 9.2. The data structure described in Sect. 9.1. It shows three levels with two
heterogeneous networks G1, G2 in level 1, three heterogeneous networks G3, G4, G5

in level 2, and two heterogeneous networks G6, G7 in level 3.

Let G1, . . . , Gm

be a set of labeled graphs with G
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). Each
graph may be directed, undirected, or mixed, and represents a specific network
of the application domain (note that a graph might also be unconnected). For
example, in the biological domain (see Sect. 9.2.1) a gene regulatory network
may be represented by a directed graph, a protein interaction network by
an undirected graph, and a metabolic network by a directed bipartite graph,
respectively (cf. the green colored graphs in Fig. 9.2).

As mentioned in the introduction, we allow networks arranged at various
levels. For modeling this property, let S = {s1, . . . , sk} be a set of consec-
utive levels. Each level can contain several graphs of G1, . . . , Gm

, but each
graph belongs to only one level. A level therefore groups graphs. The function
s : G, V,E ! S gives the level for each graph, node, or edge.

To connect graphs with each other, we introduce mappings between nodes
of di↵erent graphs. Let M = {(v
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} be a mapping which
connects a node from graph G

i

with one node from a di↵erent graph G
j

. Note
that mappings within a graph are not allowed (those “intragraph mappings”
are represented by the normal edges). Furthermore, the resulting structure
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could be seen as a new (global or union) graph G
G

which merges all nodes
and edges from G1, . . . , Gm

and the mappings (edges) M .
For simplicity, the mapping M will be restricted in the following way.

For m = (v
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) with v
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and v
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: if both nodes belong to the
same level—s(v

i

) = s(v
j

); see the red links in the figure—there will be no
restriction. However, if both nodes belong to di↵erent levels (yellow edges), a
mapping is only allowed if the following two conditions hold:

1. both levels are consecutive (neighboring) levels, i. e., s(v
i

) = s(v
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)� 1 or
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)� 1, and
2. there is a 1 : n mapping from the higher to the lower level—i. e., if s(v
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the higher level (s(v
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) + 1) then there is no other node v
k

in level
s(v
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) with (v
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) 2 M .

9.2 Application Domains

This section provides an overview of the most important visualization and
analysis challenges by means of three application fields: life sciences / biology,
social sciences, and software engineering.

9.2.1 Life Sciences / Biology

Biological processes are commonly represented as networks. Examples of bi-
ological networks are molecular biological networks such as protein interac-
tion networks (showing the interaction possibilities of proteins) and metabolic
pathways (representing the transformation of metabolites into other metabo-
lites), food webs and ecological networks (showing the dependencies between
prey and predators), and phylogenetic networks (representing the evolution-
ary relationships between species).

In the remaining of this section we first present a domain overview in-
troducing relevant terminology along the way. The next subsection discusses
major data sources and formats. Then we illuminate diverse network types
and interlinkages together with examples. The next subsection presents con-
crete use cases that benefit from the formalization presented in the previous
section and the visualization solutions discussed later. We conclude with a
discussion of challenges for multi-level network analysis and visualization in
the life / biological sciences.

Overview

A better understanding of biological networks helps in making sense of much
of the complex data which is nowadays available in biology, biochemistry,
medicine, and related areas of the life sciences. Visualization is a key method
to foster exploration and understanding, and, therefore, biological network
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visualizations have existed for a long time. The importance of visualization
and visual analysis of these networks is also evidenced by the large number of
books, tools and databases that either contain manually produced drawings
of biological processes and networks, or provide algorithms for their auto-
matic layout. Many tools are available, some comparisons of tools have been
presented (for example, in [22, 43, 60]), and a number of well known tools
supporting network visualization and analysis are:3

• BiNa [45] (http://bit.ly/y6ix9i)
• BioUML [42] (http://bit.ly/yIETIt)
• CellDesigner [20] (http://bit.ly/A0FQiF)
• CellMicrocosmos [66] (http://bit.ly/WJ8cnE)
• Cytoscape [65] (http://bit.ly/wY2sbG)
• Ondex [41, Chapt. 5] (http://bit.ly/AetZjz)
• Pathway Projector [43] (http://bit.ly/zo5x2M)
• PathVisio [27] (http://bit.ly/zunwxW)
• SBGN-ED [13] (http://bit.ly/17m7KfW)
• Vanted [30] (http://bit.ly/Aigr0T)
• VisAnt [25] (http://bit.ly/agZBni)

Data sources

Biological networks may be directly derived from experimental data (such
as protein interaction networks) or are built based on knowledge (such as
metabolic networks). There are many data sources for biological networks:
from databases covering a specific domain for a specific species (such as Ara-
Cyc [54] for metabolism in Arabidopsis) to a specific domain for a set of species
(such as MetaCrop [61] for metabolism in crop plants) to several domains for
several species (such as KEGG [34] for metabolic and signalling processes in
a wide range of species). Another important criterion is the quality of the
data which can range from completely manually curated, high-quality data
to computationally derived, uncurated data. For overviews of databases for a
range of data domains, see [4, 18], for instance.

To support exchange between tools and databases, a few standard rep-
resentations are widely used such as SBML [26] and BioPAX [14]. Also the
graphical representation of cellular processes and biological networks has been
standardized with SBGN [48] which helps in understanding the complex pro-
cesses due to the unambiguous use of glyphs. For details, see the specifications
of the SBGN languages [51, 53, 55].

3 Note that there are more than 170 tools available for network visualization and
analysis, and a complete listing and comparison is beyond the scope of this article.
We list some tools here which exists since several years and often allow easy
extensions via plugin mechanisms.
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Fig. 9.3. A hierarchy of biological networks.

Network types and examples

Several types of graphs are used to represent biological networks and some
typical examples are presented in the following. Directed graphs : gene regu-
latory and signaling networks which describe how genes can be activated or
repressed and therefore which proteins are produced in a cell at a particular
time; food webs which model the relationships between species in an ecological
system. Undirected or mixed graphs : protein interaction networks which repre-
sent the interaction between proteins such as the building of protein complexes
and the activation of one protein by another protein. Hypergraphs or bipartite
graphs: metabolic networks which show how metabolites are transformed—
for example, to produce energy or synthesize substances. Trees: phylogenetic
trees which are commonly built on information from molecular biology such
as DNA or protein sequences and which represent the ancestral relationships
between di↵erent species. There exists a hierarchy of biological networks (see
Fig. 9.3 and also Chap. 4).

An example of the data structure described in Sect. 9.1 is given in Fig. 9.4.
Here, three molecular-biological networks (gene-regulatory network, protein
interaction network, and metabolic network) are presented on level 1. Genes
in the gene regulatory network may activate or inactivate the transcription of
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other genes. Genes are transcribed into proteins, therefore the protein interac-
tion network does not only contain edges between nodes of the protein interac-
tion network (for representing interaction), but also (red) edges between genes
(gene regulatory network) and proteins (protein interaction network). Finally
the metabolic network is a bipartite graph consisting of metabolites (circles)
and enzymes (rectangles). Enzymes are proteins; therefore, there are (red)
edges connecting the protein interaction graph with the metabolism graph.
On the next level, two networks are represented: an association of all genes
to their chromosomes and a clustering of all proteins into disjunct clusters.
The yellow edges represent which gene of the gene regulatory network belongs
to which chromosome, and which protein of the protein interaction network
belongs to which protein cluster, respectively.

Fig. 9.4. An example instantiation of the data structure described in Sect. 9.1.

Typically multivariate data is connected to nodes and/or edges of the
networks. Figure 9.5 gives some examples of such data. Here we will focus
on the network structure, but it should be kept in mind that not only the
visualization of the networks, but also of the additional multivariate data is
often a challenge.

Use cases

Here we discuss use cases that involve the multi-level heterogeneous network
shown in Fig. 9.4. Genes encode proteins, and proteins have many functions
including catalyzing metabolic reactions in the form of enzymes. This ma-
jor flow of information motivates the use of the three networks on level 1 in
Fig. 9.4: gene regulatory, protein interaction, and metabolic network. These
networks focus on di↵erent aspects of the same underlying biological system.
In addition, level 2 gives further information which is either experimentally
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Fig. 9.5. Examples of multivariate data in biological networks, (a) time-series of
relative metabolite levels in a metabolic network (for two di↵erent conditions: day
and night; from [7]); (b) up- (red) and down-regulated (blue) genes in a signalling
pathway (from [39]), (c) spatial resolution of gene expression in the gene regulatory
networks of Arabidopsis (from [29]).

obtained (such as the location of genes on the chromosomes) or computed
(such as the clustering of proteins based on connectivity information).4 Typ-
ical tasks involving these networks are:

Structural properties of the networks

Which elements of the networks are important nodes (such as regulatory
genes), functional building blocks (such as feed-forward motifs [52]), or rel-
evant paths through the network (such as the shortest path between two
metabolites)? Such questions are usually answered using methods from net-
work analysis: centrality analysis to evaluate the importance of nodes or edges
in the network [44], network clustering which may structure the network into
functional modules [5], shortest paths between nodes representing potentially
preferred routes, and so on. The results of such analysis have to be visualized
in the network context and may give new insights into how important a spe-
cific gene is for an organism or which metabolic pathway may be preferred by
an organism.

4 Note spatial location and aggregation or grouping of elements can also occur in
other application domains; for example, see Fig. 9.6.
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Networks and spatial information

Are genes with close proximity on the chromosome involved in the same bio-
logical processes? For example, if genes in close proximity on the chromosome
are regulated by the same regulators in the gene regulatory network or if they
fall in the same cluster in the protein clustering, then they are likely to belong
to the same biological process.

Networks and multivariate data

Is experimental data in agreement with knowledge represented by the net-
works or not? Lots of experimental data can be attached to nodes and edges:
data obtained under di↵erent experimental conditions such as treatments or
temperature, time-series measurements, and so on. For example, the following
attributes can be used: edge weights (e. g., to represent fluxes), node weights
(e. g., to show concentrations), node presence/absence (e. g., to model knock-
outs), and node shape (e. g., to show di↵erent types of biological objects).
Multivariate data has first to be integrated into the biological network. Data
mapping deals with this integration of additional data into networks. An
example is the integration of metabolomics, transcriptomics, and fluxomics
measurement data into the metabolic network. This data can be mapped on
di↵erent network elements (such as metabolites, enzymes, and reaction edges).
The mapped data should behave in a way which could be explained by the
underlying networks. If, for example, in the gene regulatory network, only
some of the dependent genes get activated if a regulatory gene is active, this
could be an indication for a yet undiscovered regulatory process.

Challenges

The compilation of heterogeneous networks requires the identification of the
biological entities such as genes, proteins, metabolites, species and so on, and
the interconnection between the networks with (di↵erent types of) edges. The
biological entities are only partly known; therefore, the networks are not com-
plete but change with increasing knowledge. Also, the interconnection between
the heterogeneous networks is often di�cult to obtain: identifiers for biological
entities are often only unique in the context of one data source—for exmple,
a database or an ontology. There are initiatives aiming towards the creation
of globally unique and persistent URIs (e. g., the MIRIAM registry [47] and
identifiers.org [33]), but they are still only used in some databases. A com-
monly used approach is identifier mapping (see [50] for an overview of tools
capable of mapping biological database identifiers).

Tools for the visualization of analysis results often provide standard inter-
action techniques such as zooming (sometimes also semantic zooming), filter-
ing, collapsing and expanding of structures, and highlighting. There are many
tools available, but choosing the right tool is often di�cult (for links to some
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more widely used tools, see the introduction of this section). Standard visual-
ization tasks are often su�ciently solved, but more elaborated visualization,
interaction, analytics, and layout methods are an open issue. An overview
concerning open problems in biological network visualization can be found
in [3].

9.2.2 Social Science

This section reviews heterogeneous, multi-level networks in the social sciences,
drawing on research in sociology, information science, statistics, graph theory,
and network science [9]. A special focus will be scholarly networks such as ci-
tation networks of papers or journals, and collaboration networks of authors,
their institutions, and countries. We first present a domain overview introduc-
ing relevant terminology along the way. The next subsection discusses major
data sources and formats. Then we illuminate diverse network types and in-
terlinkages together with examples. In the next subsection we present concrete
use cases that benefit from the formalization presented in Sect. 9.1 and the
visualization solutions discussed in Sect. 9.3. We conclude with a discussion
of challenges for multi-level network analysis and visualization in the social
sciences.

Overview

Social networks exist from the individual (micro) to population (macro) levels.
Examples are networks of friendship and hate, collaboration and competition,
and trade and blockage between entity nodes such as individuals, organiza-
tions, cities, countries, geospatial regions, or areas of science. Typically, an en-
tity node is part of multiple types of networks—for example, a person is part
of friendship, collaboration, and family relationship networks. Nodes might
contribute to information di↵usion networks by receiving and sending emails,
tweets, or commenting on digital objects. Nodes from di↵erent levels interact
and influence each other—for example, individual authors of papers might be
aggregated at the institution or even country level, see Fig. 9.6. Journal publi-
cations can be aggregated into journals. Undirected collaboration and directed
citation edges are aggregated as well. Network edges can be mapped geospa-
tially, supporting geospatial grouping by region, county, country, or continent
(see lowest level in Fig. 9.6).

The movement of a highly cited author from one department or country to
another will impact both the expertise profiles (entity properties) and collab-
oration patterns (entity linkages) of associated entity nodes. In other cases,
networks from di↵erent levels are nested—for example, a person is part of lo-
cal social networks that can be further aggregated to global, population level
networks. Last but not least, the structure of multi-level networks impacts the
utility of the network for, for example, information di↵usion. The stronger the
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Fig. 9.6. Three-level network of di↵erent collaboration and citation networks.

edge between two nodes is, the more information can flow; the more often two
nodes share information, the stronger their edge grows over time.

Understanding the evolution of network structure and dynamics has far-
ranging applications. Among them are the prevention of disease spreading, for
example, identifying highly connected individuals that should be vaccinated
first when trying to fight a pandemic or using social networks to reducing
the social di↵usion of smoking or bad eating behaviors (see subsection “Use
cases”); to increase the spreading of information—for example, in education
or when designing e↵ective (viral) marketing strategies; to help manage the
extremely complex decision making space of professional career choices (see
subsection “Use cases”); or to form and sustain productive research and de-
velopment teams.

Data sources

Social network data might be qualitative or quantitative. Qualitative data
is commonly acquired via surveys, interviews, direct observation, or by re-
viewing written documents. Quantitative data might be derived from exist-
ing databases (e. g., phone-address-data-revealing social networks; publica-
tion data for extracting co-author networks) or acquired via measurement.
Common data sources are social media data (phone, email, blogs, Twitter,
Facebook), scholarly data (scientific publications, patents, funding awards), or
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custom data collected in research studies. Commonly studied networks are so-
cial networks, friendship networks, collaboration networks, political networks,
trading networks, and citation and other knowledge di↵usion networks.

Nodes and their linkages can be represented as an adjacency matrix, an
edge list, or lists of nodes and edges. Consequently, most network science
tools5 support Pajek .net or edge list formats as well as Graph/ML, XGMML
formats. Many tools support the extraction of networks from common file
formats—for example, publication data formats from the Web of Science,
Scopus or personal bibliography tools such as EndNote or Latex’s bibtex, or
from generic tabular formats (e. g., .csv files).

Network types and examples

This subsection discusses di↵erent network types using examples from schol-
arly network analysis—the study of authors and their papers as we assume
all readers are familiar with this data.

Networks might be directed or undirected, weighted or unweighted, valued
or not. Linkages might be among units of the same type, such as friendship or
co-authorship linkages, or between units of di↵erent types, such as authors and
the papers they produce. In general, three types of linkages are distinguished:
direct linkages such as paper citation linkages; co-occurrence linkages of words
or references; and co-citation linkages (e. g., of authors or papers). Plus, units
of the same type can be interlinked via di↵erent link types: for instance,
teenagers might be linked via love and hate relationships; papers can be linked
according to co-word, co-citation, or bibliographic coupling analysis. Linkages
might be directed and/or weighted. Each non-symmetrical occurrence matrix
has two associated (symmetrical) co-occurrence matrices; for instance, for each
paper citation matrix exists a bibliographic coupling and a co-citation matrix.

An example of direct linkages are paper-paper (citation) linkages: Papers
cite other papers via references, forming a non-weighted, directed paper cita-
tion graph. It is beneficial to indicate the direction of information flow from
older to younger papers via arrows. References enable readers to search the
citation graph backward in time. Citations to a paper support the forward
traversal of the graph. Citing and being cited can be seen as two vital roles
of a paper.

Co-occurrence linkages interconnect co-author networks. Having the names
of two authors (or their institutions and countries) jointly listed on one paper,
patent, or grant is an empirical manifestation of scholarly collaboration. The
more often two authors collaborate, the greater the weight of their joint coau-
thor link. Weighted, undirected co-authorship networks appear to have a high
correlation with social networks that are themselves shaped by geographic
proximity.

5 http://sci2.wiki.cns.iu.edu/display/SCI2TUTORIAL/8.2+Network+

Analysis+and+Other+Tools
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Word co-occurrence linkages are used to calculate the topic similarity of
basic and aggregate units of science. Units that share more words are assumed
to have higher topic overlap and are connected via linkages and/or placed in
closer proximity on a topic map. Co-occurrence networks are weighted and
undirected.

Co-citation linkages is as follows: Two basic or aggregate units of science
are said to be co-cited if papers associated with them jointly appear in the list
of references of a third paper. The more often two units are co-cited, the more
they are expected to have something in common. Examples are document
co-citation and author co-citation networks.

Given a data file with publication records retrieved from the Web of Sci-
ence or Scopus database, more than 30 di↵erent networks can be extracted.
Some of these networks—for example, co-author or paper-citation networks—
have been studied extensively and their structure, distribution, and evolution
are known. Other network types—particularly heterogeneous networks inter-
linking di↵erent levels—have not yet been studied in detail.

Use cases

This subsection exemplarily discusses two use cases that involve multi-level
heterogeneous social networks. For each, we identify user needs/tasks, work-
flows, and insights gained.

Reducing social contagion of smoking behavior

Social peer pressure is powerful. The desire of an individual to be an ac-
cepted member of a group frequently leads to behavior that the individual
would not show without the group. For example, it is well known that—
all other things being equal—joining a well-organized team of experts will
lead to higher professional performance than joining a team of less skilled,
less organized individuals. Studies by Christakis and Fowler have evaluated
a densely interconnected social network of 12,067 people assessed repeatedly
from 1971 to 2003 as part of the Framingham Heart Study to show the rele-
vance of social networks in the di↵usion of not only smoking and obesity [10],
but also loneliness. Relevant news stories were entitled: “Are Your Friends
Making You Fat?”6 While it is di�cult and in some cases impossible to dis-
tinguish correlation vs. causation [11]—for example, some of the shown e↵ects
could be due to the “birds of a feather flock together” factor also known as
homophily—networks seem to impact outcomes. A scientific approach that
considers homophily, environment, and induction (e. g., by using multi-level
heterogeneous networks) seems promising.

For example, it appears beneficial to study individuals in the context of
multiple, interconnected networks. Level 1 might comprise the di↵erent social

6 http://www.nytimes.com/2009/09/13/magazine/13contagion-t.html?

pagewanted=all&_r=0
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networks of a teenager node A. Among them are family, school, and out-of-
school friendship networks. Level 2 aggregates these networks to families and
clans (groups of teenagers) that have diverse profiles and interlinkages. Ge-
ography matters: the ease by which A can come into contact with teenagers
and other individuals that have di↵erent demographic profiles is important—
just like in Fig. 9.6 a spatialization level can be used to represent geospatial
factors. Using this representation, the number of linkages to positive and neg-
ative influences can be calculated—for example, the strength of network ties
to peers and family members, the rate of contact, and geospatial proximity
can be determined for any individual node. Using computational models, it
might be possible to predict the general impact of network changes on indi-
vidual behavior. The big, open question is: How to change social networks
and/or environments to cause positive change?

Designing successful career trajectories

Pathways that individuals choose from taking their very first job and then
moving on to the next during their working years are called career trajectories.
They might be plotted over time, geospatial space, or topic space. Individuals
might change locations and jobs because of warfare, political problems, eth-
nic purging, or because of voluntary or volitional migration where individuals
choose to relocate to new places because of opportunities o↵ered in the new
place. In the latter case, social factors (e. g., closeness to family and friends,
standard of living), colored by cultural, historical, linguistic, or weather con-
siderations, but also active encouragement by visa and immigration controls
are key criteria. Education is another major factor—low education typically
equates low paying jobs and little resources to pay for education or to move
to a di↵erent place. High education commonly leads to better paying jobs
and the generation of financial wealth that pays for personal education or
the education of family members. Highly specialized expertise profiles might
also mean that only a few jobs exist that match this expertise profile and
international migration is required to find an appropriate job.

Coming back to the study of scholarly networks, much data exists to track
career trajectories of scholars over time. The U.S. National Science Founda-
tion has been conducting the Survey of Doctorate Recipients (SDR) biennially
since 1973. The SDR follows a sample of U.S.-trained doctorates in science,
engineering, and health fields throughout their careers from shortly after de-
gree award by a U.S. institution through age 75. Multivariate data such as
detailed information on professional position, salary, number of kids, etc. is
available for each respondent in a longitudinal fashion. In addition, there ex-
ist extensive publication and funding databases that record funding intake
(number of awards and funding amounts) and publication output (number of
papers and their citations) over time together with information on not only
co-investigators and coauthors, but also institutional a�liations, and acknowl-
edged grant funding that interlinks funding and publications.
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In general, career trajectories are best viewed as decisions over time. As it
is much easier to change institutions than to change a topical area of exper-
tise; researchers change geolocations frequently (particularly in the beginning
of their career). However, they are less likely to change their topic area and, if
they do, decide to venture into topically similar areas of science that benefit
from the same skill set/expertise. Multi-level networks can be used to repre-
sent the impact of geospatial features—for example, car routes and air tra�c
networks as a proxy for reachability (spatialization level). Level 1 might show
scholar node B and associated family links, mostly local friendship networks,
(international) co-author relations, and collegial networks at the same insti-
tution. Level 2 might be used to represent the reputation and interlinkages of
institutions and scientific disciplines. Family and friendship links, the reputa-
tion of another institution, and also attributes of the new geolocation (living
costs, weather, etc.) have the power to make a person look for or accept an-
other job—if a job o↵er is made. The new institutional environment together
with new friendship and collaboration opportunities will change funding and
publication patterns of an individual scholar and ultimately the conditions for
the next career step. Note that not only individuals and families but also com-
panies and organizations migrate in response to market changes, to maximize
economic utility, or to be close to customers.

Challenges

The extraction of heterogeneous networks requires the identification of unique
entities—for example, people, institutions, scientific areas, and their inter-
linkage via (di↵erent types of) edges. While publications, patents, and other
digital documents have unique digital object identifiers, the development of
digital object identifiers for authors, institutions, and scientific areas is still
under active development. Similarly, the interlinkage of (heterogeneous) net-
works across levels poses serious unification and data mapping challenges.
Many problems require n : m mappings not only within one level but also
between consecutive levels—implications for restricting the mapping to 1 : m
are unknown. For example, Fig. 9.6 assumes that each author has exactly one
a�liation and each institution is mapped to one country—this is not true for
all authors nor institutions.

Few algorithms exist to analyze and visualize heterogeneous networks—
most algorithms assume there is one node type and one edge type. Visual-
izations are important to communicate complex heterogeneous, multi-level
networks. However, most readers hardly ever learned how to read and inter-
pret a network and seeing multiple interlinked networks with di↵erent node
and edge types is often overwhelming.

9.2.3 Software Engineering

A plethora of tasks in software engineering involves analyzing software arti-
facts that are best represented using networks, see also Chap. 2. We will focus
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on object-oriented programming languages like Java or C++ for implementa-
tion. Other languages will lead to similar structures. The di↵erent networks
can be categorized into static software structure (e. g., classes in Java or C++
and their connections) and dynamic software structures (e. g., which classes
are instantiated and when and how these instances are connected to each
other). Furthermore, di↵erent structural connections between the same nodes
(classes) are possible—for example, call graph, inheritance (both directed) or
code clones (undirected). This forms a within-level set of graphs. Another
within-level set of graphs is given by the change of the graphs over time. Dur-
ing the evolution of the software system (seen as snapshots in repositories like
svn, cvs, or git), the graph changes: nodes (classes) are added, deleted, or
changed, and also links are added or deleted, or they change their properties
(e. g., the number of methods of one class called by another one). Finally,
software entities are structured: methods belong to classes belong to modules.
These modules can be represented by, e. g., packages in Java or namespaces
in C++. This package or namespace tree can be directly mapped to the levels
of Fig. 9.2.

In the following of this section we first present a domain overview introduc-
ing relevant terminology along the way. The next subsection discusses major
data sources and formats. Then we present diverse network types and inter-
linkages together with examples. The following subsection presents concrete
use cases. We conclude with a discussion of challenges for multi-level network
analysis and visualization in software engineering.

Overview

The data produced and used in software engineering is manifold. First of
all, software development processes can be mapped to directed graphs with
loops, where each development step is mapped onto a node, and an edge
designates the sequence of these steps. Further, software development artifacts
like system designs, detailed designs, and the static and dynamic structure
of programs can be mapped onto directed and undirected graphs. Finally,
algorithms can be visualized. In this latter case, graphs are more rarely used,
except that the algorithm requires the handling of graphs.

The networks can be time-dependent (n : m mapping within a level)—
for example, data from cvs, svn, or other repositories—and multi-level (1 : n
mapping between levels)—for example, package structure in Java. Further,
they have di↵erent node and edge types, and to each of these nodes and
edges additional information (multivariate data) can be associated. Thus, the
networks have all properties described in Sect. 9.1 and shown in Fig. 9.2.

An exemplary instantiation of Fig. 9.2 is shown in Fig. 9.7. All nodes in
the lowest-level—level 1—represent classes. These classes are related by edges
(green) representing, for example, method calls. They are grouped accord-
ing to their revision (release); three releases are shown. Classes (nodes) that
are present in subsequent revisions are connected by red edges. Aggregating
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Fig. 9.7. An example instantiation of the data structure described in Section 9.1.

classes into packages (yellow edges) results in the graphs on level 2. Here, the
nodes represent both nodes and packages. Packages are those nodes which are
connected by yellow edges to level 1. The same holds for level 3.

Understanding software processes is important for assigning and managing
resources during the software development process, while understanding the
structure and the behavior of software products (software comprehension) is
important for bug fixing and extending existing software systems (software
maintenance).

Data sources

Networks in software engineering are either created manually or automatically.
Manual creation occurs normally for describing software engineering processes
and during software development in the design phase. However, the latter
networks are only reliable in the case of automatic code generation. Whenever
code is generated manually, the design is usually changed either intentionally
or unintentionally. Therefore, software systems are commonly analyzed based
on graphs extracted directly from the source code. The source code itself
comes from software repositories like svn, cvs, or git. During the extraction,
the graphs are generated. Some systems additionally extract so-called software
metrics. In the latter case, these software metrics are used as attributes of the
classes (nodes). The attributes for the edges can also be inferred from these
metrics. On the other hand, the number of edges of the same type can be
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counted and used as an additional measurement (e. g., how many di↵erent
method calls occur from class A to class B).

The granularity of the analysis influences which are the lowest-level entities
(nodes). Most often, either classes, methods or member variables of classes are
chosen as atomic entities. Methods and member variables of classes are a part
of classes, which in turn are a part of packages. Packages themselves form a
tree with one root package or a forest with several root packages. Edges might
represent directed relations like method calls, inheritance, instantiation, or
aggregation, or undirected relations like code clones or common fate.

Finally, execution logs (traces) of program runs are mined to create dy-
namic call graphs. In this case, nodes are mostly the instantiated classes, while
edges are mostly the dynamic call relations between the class instances. How-
ever, static relations like aggregation or inheritance can help to understand
the behavior of the programs. More data sources and how these sources are
mined to obtain information are described in Sect. 2.3.3 of this book.

Network types and examples

Software processes are mapped onto networks similarly to other processes
(e. g., business processes, schedules, or production processes). Each develop-
ment step is mapped onto a node and can have additional information assigned
(e. g., number of developers, time allocated for this step, a list of tasks, in-
puts, and deliverables). Each step is connected to the following step by an
edge. This edge normally is guarded in the sense that it can be only followed
if the deliverables of the previous step are ready (to a certain amount). As
the processes can branch and can have loops, the graphs cannot be reduced to
trees or DAGs (directed acyclic graphs). Mostly, the process comes in an ab-
stract form that is instantiated for a specific project. Therefore, several similar
networks exist that can be compared to each other (e. g., the instantiations
among each other). Further, the process can be in the form of a hierarchy.
Then, each node of the high-level process is refined into a number of steps
that can be refined themselves.

The static structure of software artifacts can also be mapped to typically
directed graphs. Taking Java source code, these networks have the following
properties. The hierarchy of Java packages can be mapped to di↵erent levels.
The lowest-level nodes can be either classes or methods, members, and sub-
classes of classes. The snapshots in time (typically saved in revision-control
systems) form a sequence of hierarchical networks. Many revision-control sys-
tems allow branches and merges, such that the sequence becomes a directed
acyclic graph. Possible links (edges) on class level are inheritance, method
call, aggregation, implements relation, and usage relation (similar to aggre-
gation, where the class is used as type of another class’ member, it can also
be used as type of return values, parameters, or exceptions). Besides these
directed links (edges), also undirected links (edges) might also exist like code
clones, common fate (evolution, classes that are often changed together), or
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semantic similarity. Aggregating the classes and sub-packages in packages di-
rectly implies the aggregation of the edges; thus, a hierarchy is built for one
time-step.

The dynamic structure of a software system also leads to a sequence of
networks. However, these networks typically have a 1 : n mapping as the
underlying static structure does not change. Instead, individual edges are
activated and deactivated according to the dynamic evolution of the networks.
Indeed, the nodes of the dynamic networks are instances of the nodes of the
static network, where each static node can lead to an arbitrary number of
dynamic nodes. The same holds for the edges: call graph edges get instantiated
during the evolution of the run. Of course, the granularity can be again on
class or on any of the package levels.

Use cases

Use cases are typically directly derived from software engineering tasks (see
also Sect. 2.3 in this book). Tasks that benefit from visualizations include

Software understanding

Understanding the functionality and the interplay of components necessitates
the understanding of the static and dynamic structure. Further, it is the basis
for the maintenance task.

Maintenance

To maintain a system, a thorough understanding of the individual components
as well as their dependencies is needed. The dependencies are best analyzed
based on visualizations of the static structure and dynamic runs.

Re-engineering

Re-engineering is needed for legacy systems or whenever the new developer
can not directly access the knowledge of the original developers. Like Software
understanding, the interplay of the di↵erent components plays an important
role, which is best understood using static and dynamic networks.

Testing and bug fixing

For bug fixing, the interplay of components is very important, because side
e↵ects on other components should be minimized when changing an individ-
ual component. The same holds for adding new functionality. The current
behavior should not change by adding additional functionality.
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Product lines

Product lines incorporate basic functionality in a core of components, adding
functionality by additional or changed components. For product lines, it is
mandatory to understand the relationship between the di↵erent products.
The goal is to maximize the amount of common components, minimizing the
e↵ort for creating additional functionality using additional components.

Challenges

There exist a lot of software visualizations, but only a few of them are scalable
and comprehensive. Most of the existing solutions either focus on specific
properties of software artifacts, like metrics, static structure (UML diagrams)
at one time step with several types of edges, or static structure over time with
one edge type.

Highly necessary for e↵ective program comprehension are integrated views
like the AreaView tool developed by Byelas at al. [8]. While this tool integrates
UML diagrams with metrics and several areas of interests, it displays neither
hierarchies nor several time steps. We need an integrated set of visualizations
and interactions that allows us to look at static software artifacts from several
points of view, showing or filtering information on demand to allow a focused
analysis of the software artifacts. Such approaches should visualize networks
with the following properties:

1. time-dependent static structures: e. g., svn or cvs snapshots;
2. structure hierarchies: e. g., packages and classes in Java;
3. distinct node types: e. g., classes and interfaces in Java;
4. distinct edge types: e. g., inheritance, aggregation, method calls (directed)

and code clones, semantic similarity (undirected);
5. software metrics as additional node information: e. g., lines of code, num-

ber of methods, depth of inheritance;
6. metrics associated with edges: e. g., number of method call relations, sim-

ilarity.

While all of these properties mainly map to visual structures, interaction has
always to be considered as part of the solution—that is, at least the use
of standard interaction techniques is mandatory. Only if users are allowed
to interactively explore selected parts of the software artifacts, they will be
able to gain new insights and find the information needed for solving specific
tasks. Thus, interactive visualizations must be seamlessly embedded in the
software analyst’s work flow. Only then can analysts discover complex patterns
in software. Specific challenges derived from this general challenge are:

Scalability: How to depict several levels of several revisions over time? Usu-
ally, the graphs are so large that a cut through the level hierarchy is
needed showing the focused information in detail (lowest-level) and the
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context information reduced (on a higher level). Showing a series of cuts is
then asked for to analyze the evolution of the software system for finding
patterns or unusual changes, see also Chap. 10.

Comprehension: What is the best visualization-interaction combination for
showing all relevant information?
• Metrics: On the one hand, metrics (i. e., attributes on the nodes and

edges) have to be included in a non-obstructive way with respect to
the structure.

• Multiple Edge Types: On the other hand—besides the hierarchy—
each level might also represent di↵erent edge types. Then the yellow
edges in Fig. 9.7 represent again the same node, while the levels in
this case represent di↵erent structural information like call graphs,
inheritance, or code clones. Possible solutions for this problem have
already been proposed by Abuthawabeh et al. [1, 2] based on a matrix
visualization. A similar approach using node-link diagrams has been
proposed by Knodel et al. [40]. However, these two approaches need
further improvements to become valuable in software comprehension
tasks.

9.3 Visualization

The visualization of heterogeneous networks on multiple levels is still rela-
tively unexplored in the literature. However, there are a number of visualiza-
tion approaches that focus on solving specific analysis tasks or operate on a
subset of the data structure introduced in Sect. 9.1, for instance on heteroge-
neous multivariate networks: some approaches abstain from explicit encoding
of the network topology and visualize aggregated information only. This idea
supports the analysis of very large data sets in terms of many heterogeneous
networks and large multivariate attributes. ManyNets [19] represents networks
as rows in a table together with their multivariate data (primary as well as
secondary data [37]) similar to the well-known TableLens [58]. Several inter-
action possibilities support the visual analysis of the networks which might
also be displayed as node-link diagram on demand. GraphTrail [16] has sim-
ilar aims, but in contrast to showing the networks in a table, the developers
have chosen to represent the network elements in an aggregated form. For do-
ing this, standard charts like bar charts or tag clouds are employed that can
be interactively arranged on a canvas. GraphTrail also supports the analysis
process by providing a history functionality (Sect. 6.3.2 in Chap. 6 discusses
GraphTrail in more detail). Other approaches abstract directly in the node-
link representations, such as OntoVis [63]: an ontology graph, which describes
the node categories/clusters and their relationships and serves as a vehicle to
control the abstraction and navigation processes. In addition, layout methods
have been proposed which try to preserve similar parts in the heterogenous
networks such as the visualization of two or three heterogenous networks in
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parallel planes in three dimensions is discussed in [21]. All these tools and
approaches have in common that they provide solutions for analyzing a set of
heterogeneous multivariate networks, but not at multiple levels.

In the following, we provide a short overview of techniques and ideas that
might partly solve the problem of representing a set of heterogeneous networks
distributed in several levels. All figures refer back to the sample three-level
networks in Fig. 9.2, with green indicating the lowest level, red indicating the
middle level, and blue indicating the upper level.

9.3.1 Approaches for Networks at Multiple Levels

Stacking

The most obvious visualization metaphor for networks on di↵erent levels is
stacking. All networks on the same level are laid out (by using any more or
less smart graph drawing algorithm) on a 2D plane, and then these planes
are stacked in 3D (cf. Fig. 9.8). Multivariate data attached to the nodes or
edges might be displayed within the planes themselves, as additional layers
below or above the individual 2D planes, or separated into multiple coordi-
nated views [59]. One of the existing example tools is VisLink [12], which is
a general approach to show relationships between visualizations. In our spe-
cial case, networks on levels are displayed on multiple 2D planes that can be
arranged in the third dimension in various ways (in parallel, book-like, etc.).
Relationships are represented as links—that is, as inter-plane edges. Here also,
multivariate data can be represented inside of the planes or on additional in-
dividual planes. In the latter case, inter-plane edges might be used to point
to the attached multivariate data. Note that—according to our definitions—
heterogeneous networks are usually placed by VisLink to di↵erent planes and
not on one plane. The most obvious drawback of such 3D techniques is their
low level of scalability as well as clutter and perspective distortions especially
when showing multivariate data in combination with the networks themselves.

Nesting

Another thinkable visualization approach is to use nesting for the explicit
encoding of inter-level edges. This requires that mappings across consecutive
levels are of 1 : n type. Figure 9.9 shows an example of how such an approach
might look. Multivariate data could be represented as additional graphical
features of the nested boxes/circles or within separated, coordinated views.
Advantages are the “flat” layout which might support finding answers for spe-
cific tasks, such as the analysis of the aggregation results between co-author
networks and institute collaboration networks (cf. Fig. 9.6). Another benefit
is the integration of various interaction techniques similar to Treemaps [28].
Disadvantages are the visual complexity of the approach—induced by the mix-
ture of link and box elements—as well as the possibly high space consumption.
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Fig. 9.8. Stacked 2D planes of network drawings which show the same networks as
given in Fig. 9.2.

Fig. 9.9. Sketch of a nesting approach which shows the same networks as given in
Fig. 9.2. Closed contours (incl. circles for nodes in level i that have no links to level
i� 1) are used to represent the 1 : n mapping between levels.
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Although this approach can be used for the hierarchical presentation of one
single network (e. g., clustering) [15], we are not aware of related works in the
visualization literature for heterogeneous networks at multiple levels.

Alignment

The next approach uses one view per level which are all aligned to each other
(cf. Fig 9.10). If a user brings a network part at one specific level into his
view by zooming and panning, the related nodes in the other networks are
shown simultaneously within the remaining coordinated views. Brushing can
be used to selected individual nodes together with their neighbors at other
levels as exemplified in the figure. Advantages of this idea are the simple
metaphor which can be implemented easily as well as the rich interaction
possibilities. Negative aspects might be the large space consumption of the
many views and the missing inter-level edges. However, so-called context-
preserving visual links [68] could solve this issue. Multivariate data could be
displayed within the views (e. g., by glyphs or similar) or within additional
coordinated views. The Entourage tool [49] realizes a similar approach with
a special focus on contextual subsets, but without explicit encoding of the
di↵erent levels. Here, contextually relevant pathways are displayed side-by-

Fig. 9.10. Sketch of the alignment approach which shows the same networks as
given in Fig. 9.2. Here, one node in the middle level was selected (orange halo); its
neighbors in the lower level were highlighted accordingly (dashed orange halo).
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side together with a focus pathway, and only important parts of those context
pathways are visible depending on the current selection in the focus pathway.

9.3.2 Challenges and Future Directions

Heterogeneous networks on multiple levels are not easy to visualize even with-
out attached multivariate data. One reason is the sheer size of the involved
networks. Most graph drawing methods do not scale well. Another reason
is the specific structure that is inherently given by the set of heterogeneous
networks and the levels themselves: it is not e�ciently reflected by most vi-
sualization approaches. Clever interaction techniques might help here, but in
contrast to the visual analysis of single networks (or perhaps also heteroge-
neous networks within one level) we do not have a good understanding which
interaction techniques and analytical methods work best in this context. More
work has to be done to develop new visual representations and interaction
metaphors to solve the specific problems and tasks described in the previous
sections. This process has to be accompanied by user studies. Performing good
and reliable evaluations is a challenge on its own, and we refer to the book [57]
for further reading.

In this chapter, we restricted ourselves to 1 : n mappings across consec-
utive levels which can be su�ciently motivated by many concrete data sets
and analysis tasks in our applications fields. However, there are—of course—
situations in practice that demand universal n : m relationships between net-
work elements in di↵erent levels that must not be consecutive. Section 9.2.2
briefly exemplifies this issue. Because of the structural flexibility which comes
with such general approaches, visualization experts have di�culties with the
development of novel methods and tools that are able to handle those cases.
From the perspective of visual analytics, more research has to be done in or-
der to improve/facilitate the analysis processes. The analysis of heterogeneous
networks on multiple levels is usually not done by just one analyst. Usually,
several people work together—whether it be at one place (co-located) or sev-
eral places (distributed), or whether it be at one specific period in time or at
several di↵erent times. Our visualization and analysis tools should be able to
support such collaborative work, record analysis sessions, support annotations
by the users, and provide some guidance during the analysis process [37]—that
is, a visualization should support “guided analytics to lead analysts through
workflows for common tasks” [23].

For the integration of multivariate data into heterogeneous networks on
multiple levels initial ideas have been proposed, but so far we have not really
solved this problem. Both the network topologies and the attached multivari-
ate data together are of great importance to the analysts, and in many tasks
both is needed to solve specific questions and gain insights into the data. All
ideas presented in Sect. 9.3.1 have the tendency to pay more regard to the
network topology and not so much on the multivariate data. Such data can be
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added via glyphs or coordinated views, but this is not enough to discover pat-
terns between the data and the network structure. Vice versa, if we focus on
the multivariate data such as done by attribute-based network layouts [64, 71]
and similar approaches [32], we run into the same problems. Thus, finding an
appropriate bunch of techniques for the common analysis of multivariate data
within networks of networks is still an unsolved challenge.
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