
CG:YRF, Chapel Hill, NC, USA, June 16-20, 2012

The Discrete and Continuous Snowblower Problem

Sándor P. Fekete∗ Jan-Christoph Kalo* Christiane Schmidt*

Abstract

We consider the snowblower problem for a fixed throw
direction. For the discrete case, introduced in [2] we
improve the approxmation factor. In addition, we gen-
eralize the problem and formulate the continuous snow-
blower problem. The snowblower is a line of length 1
that moves overtraveled snow to the right by exactly
1 unit at any point in time. In particular, this exten-
sion allows to deal with a maximal allowed height of one
(D = 1), as we are able to deal with reflex vertices of
the polygon. For this model we present approximation
algorithms for squares and polyominoes.

1 Introduction

The snowblower problem (SBP) was introduced by
Arkin et al. [2]. Given a polygonal region it asks for
a shortest tour of a snowblower such that all snow ini-
tially located in the polygonal region is moved outside.
The movement of snow is modeled as a shift of a unit
of “material” (i.e. snow for our imagination). At each
point in time the snow may not exceed a maximum al-
lowed height D. If you consider boxes rather than snow
units, this relates to a bound on the stack height. The
snowblower is modeled as a unit square that moves hor-
izontally and vertically, only, and uses steps of length
1. Hence, integral-orthogonal polygons, polyominoes,
are considered. For the outside no height bound ap-
plies. Arkin et al. [2, 3] considered several models for
the direction in which the snowblower may throw the
snow. In the default model snow may be thrown in
any direction (left, right, forward and backward), for
the adjustable-throw model the backward throw is ex-
cluded, the fixed-throw model restricts throws to the
right. In this paper, we consider the fixed-throw model,
only.

In the following we will refer to this problem as the
discrete snowblower problem (DSBP), this notion is mo-
tivated by the unit steps of the snowblower and the units
of snows moved in any step. This assumption makes it
impossible to clear any polygon, in particular, any poly-
omino, with reflex vertices and D = 1. See Figure 1(a):
the snow from the shaded pixel cannot be moved with-
out building a stack on another pixel or the allowance
to move over uncleared regions.

∗Department of Computer Science, Braunschweig University

(a)
(b)

(c)

Figure 1: Snow is shown in gray. (a) The shaded pixel can-
not be cleared for the DSBP and D = 1. (b) The snowblower
in the CSBP moves overtraveled snow to the right by one
unit. (c) Moving around a reflex vertex in the CSBP model:
the black area is cleared if the snowblower enters the three
pixels from below.

This motivated us to extend the problem: We think
of the snowblower as a line of length 1 (moved around
by its center point). At any point in time it will move
any snow that it covers by exactly one unit to the right,
see Figure 1(b). Hence, the snowblower is now able to
cope with reflex vertices, see Figure 1(c), all snow is
cleared over the vertex. Thus, in the new model we are
able to clear polygonal regions for a maximal allowed
height of 1 (D = 1). Again, we are interested in a
shortest tour for our snowblower such that all snow in
the polygonal region ends up outside of its boundary.
As we use the term “short” we still need to determine
the cost of a movement. Using covered distance only,
we could rotate around the snowblower’s center without
causing any costs, though snow may be moved during
this operation also. On the other hand, if we restrict to
consider the area swept through, we may cover an ar-
bitrary distance for cost zero by moving parallel to the
snowblower’s extension. Consequently, the cost for any
section is the maximum of distance covered and area
swept through. We will refer to this problem variant
as the continuous snowblower problem (CSBP). The
rest of this paper is organized as follows. Section 3 pro-
vides definitions, in Section 4 we consider the discrete
snowblower problem and present approximation strate-
gies for squares and polyominoes, we consider the same
polygon classes for the continuous snowblower problem
in Section 4. We conclude in the final Section 6.

2 Related Work

As mentioned in Section 1 the SBP was defined by
Arkin et al. [2, 3]. The authors proved the SBP in

of Technology, Germany, {s.fekete,c.schmidt}@tu-bs.de

This is an abstract of a presentation given at CG:YRF 2012. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

1st Computational Geometry Young Researchers Forum, 2012

the first two models to be NP-complete for polygonal
domains with holes. They present approximation al-
gorithms for all three throw models. For the default
model they give a discrete Voronoi decomposition of the
polyomino and present operations to clear the occur-
ring lines and combs of this decomposition. This allows
for an 8-approximation. For the other models Arkin et
al. show how to emulate the operations performed in the
default model by a sequence of moves. As an adjacent
row needs to be used, bD2 c pixels of snow are considered
for an operation only, this results in a dependance on
D/bD/2c of the approximation factors: (4+3D/bD/2c)
for the adjustable-throw model and (34 + 24D/bD/2c)
for the fixed-throw model.

The CSBP and even more the DSBP are closely re-
lated to milling and lawn-mowing problems, studied for
example by Arkin et al. [4] and Held [5]. In partic-
ular, for the CSBP and D = 1 reflex vertices infer a
cost higher than “normal” sides, so treating these is
closely related to milling problems with turn costs as
introduced by Arkin et al. [1].

3 Notation and Preliminaries

We consider a polygon P , for this paper P is either an
integer square or a polyomino. In Section 4 we keep the
notation from Arkin et al. [3].

4 Discrete Snowblower Problem

Polyominoes. We use the notation from [3] in this sec-
tion. Hence, the two lower bounds, the number of pixels
covered with snow, the snow lower bound snow(R), and
the distance lower bound

dist(R) =
1

D

∑
p∈snow(R)

d(p, δP) (1)

where d(p, δP) denotes a pixel’s p shortest distance to
a boundary pixel plus 1, are the same. In addition,
we consider the same Voronoi decomposition as pre-
sented by Arkin et al.: for a pixel p ∈ P Vs(p) denotes
the element of δP closest to p (where we use the same
tie-breaking rules as Arkin et al.), a Voronoi cell of a
side e ∈ δP is defined as Vor(e) = {p ∈ P | Vs(p) =
e}. Any Voronoi cell is either a line (with a path as
the dual graph), or a comb, or a double sided comb.
For a comb the dual graph has a spanning tree with
one vertical path through the “handle” and horizontal
paths through the “teeth”. Emphasizing this underly-
ing graph structure Vor(e) is also denoted by T (p) for
the boundary pixel p, this denotes a unique tree, that
is a line or a comb. We need to clear the resulting lines
(L) and combs (C) as well. Note that each shortest
path in this decomposition bends at most twice - once
to the right, once to the left. For our algorithm, we

first clear all boundary pixels and reflex vertex pixels
with one run along the boundary (this is possible for
D ≥ 2). For a line L we consider the line and the adja-
cent pixels, see Figure 2(a). Due to the cleaning of the
boundary, L’s base as well as the two pixels marked by
a cross (if both exist, otherwise only the top pixel) are
clear. Either of them is a boundary pixel, we will use
it to move the snow outside of P . We start with clear-
ing the line to the adjacent pixels, this move is denoted
by the dark gray dashed line. As we have two rows of
pixels—but charge to one line—we split the line in sec-
tions of length

⌊
D
2

⌋
, indicated by the horizontal lines in

Figure 2(a). Then, we only need to make sure that we
transport the shaded pixels—the pixels within distance
i ·
⌊
D
2

⌋
, i ∈ N on L—(by now located in the row to the

right) to the boundary, all other pixels in the same in-
terval will be cleared “automatically” (they are carried
along). In case we consider a straight line we need three
steps to push the snow one pixel further to the bound-
ary, indicated by the bold black line in Figure 2(a). Left
bends only decrease the necessary number of steps, for
a right bend we need 5 steps, see Figure 2(b).

With the notation from [2] we let L | J denote the line
L with the first J pixels clear, l =| L |, l−J = k′bD2 c+r

′.

(L | J)bD
2 c denotes the first k′

⌊
D
2

⌋
pixels of L | J , Lr′

the last r′ pixels. We spend 2(l − 1) for the initial line

shift, at most 5
∑k′bD

2 c
i=1 (J + i ·

⌊
D
2

⌋
), that is, 5 times

the boundary distance of the shaded pixels except for
the last (not within distance i ·

⌊
D
2

⌋
, i ∈ N), to clear

the snow up to a depth of k′
⌊
D
2

⌋
into L (that is, for

clearing (L | J)bD
2 c) and at most 5(l − 1) to clear the

remaining r′ units of snow. We have:

dist((L | J)bD
2 c) =

1

D

k′bD
2 c∑

i=1

(J + i)

=
bD2 c
D

(k′J +

⌊
D

2

⌋
k′(k′ + 1)

2
)

snow(L \ p) = l − 1

cost(L | J) = [cost((L | J)bD
2 c)] + [cost(Lr′)]

= [2(l − 1) + 5

k′bD
2 c∑

i=1

(J + i ·
⌊
D

2

⌋
)]

+[5(l − 1)]

= 7(l − 1) + 5 · (k′J +

⌊
D

2

⌋
· k
′(k′ + 1)

2
)

⇒ cost(L | J) ≤ 5· D

bD
2 c

dist((L | J)bD
2 c)+7·snow(L\p).

For a line where all clearing operation are
⌊
D
2

⌋
-full

passes (a pass that clears
⌊
D
2

⌋
units of snow) the 5(l−1)

are omitted, we can bound the 2(l − 1) by the distance

CG:YRF, Chapel Hill, NC, USA, June 16-20, 2012

(a)

(b)

(c)

Figure 2: (a) Clearing a line L, the left column of pixels.
(b) 5 steps are necessary to move snow one pixel further to
the boundary along a line with a right bend. (c) A comb C.
Snow is depicted in light gray in all Figures.

lower bound as well and we obtain:

cost(L | J) ≤ 5

k′bD
2 c∑

i=1

(J + i ·
⌊
D

2

⌋
) + J + 2k′

⌊
D

2

⌋

≤ 7

k′bD
2 c∑

i=1

(J + i ·
⌊
D

2

⌋
)

⇒ cost(L | J) ≤ 7 · D⌊
D
2

⌋dist((L | J)bD
2 c)

For a comb we clear P ⊆ C with
⌊
D
2

⌋
-full passes. That

is, while there is a line L ⊆ C rooted at p, such that
snow(C) ≥

⌊
D
2

⌋
, we execute

⌊
D
2

⌋
-full passes on L. The

remaining pixels B ⊆ C (indicated in gray in Figure 2(c))
are cleared collecting

⌊
D
2

⌋
units of snow, starting from

the highest teeth still covered with snow. These moves
are also denoted as brushes: for each brush b = 1, . . . , B,
tb and tb′ are the first and the last tooth visited during
brush b. Hence, each tooth is entered at most twice
(no full passes were possible anymore), at a cost of 4
charged to each pixel, see the orange pass indicated in
Figure 2(c) used to clear the yellow pixels. The snow is
passed on to the adjacent pixel row. Thus, we need at
most 2 ·4 ·size(C \H) moves for the teeth, for the handle

we need at most 2 · 3 ·
∑B
b=1(tb − 1) ≤ 6 · D

bD
2 c

dist(B)

moves. Thus

cost(B) ≤ 6 · D⌊
D
2

⌋dist(B) + 8 · snow(C \ H)

As P ∩ B = ∅:

cost(C) ≤ 7 · D⌊
D
2

⌋dist(C \ p) + 8 · snow(C \ p)

Again, as in [2], we consider the disjoint trees T (pi), i =
1, . . . ,m, of the Voronoi decomposition. We have at
most 7 · D

bD
2 c

dist(T (pi) \ pi) + 8 · snow(T (pi) \ pi) for

each T (pi) \ pi and 2 · snow(∪mi=1pi) for the start. We
conclude:

Theorem 1 For a snowblower that can throw only to
the right, a (8 + 7D

bD
2 c

)-approximation to clear a simple

polyomino can be found in polynomial time.

Squares. For a n× n square, Sn, and a snow height
of D = 1, the distance lower bound is:

dist(Sn) =

n
2∑
i=1

(2i)2 =
1

6
n3 +

1

2
n2 +

1

3
n

=

(
n+ 2

3

)
We present a strategy that starts with moving in spi-

rals (from the layer of boundary pixels to the center of
Sn). After completing one spiral, we move to the out-
most layer again, this invokes cost of at most n. Mov-
ing along these spirals creates 4 triangles still covered
with snow, see Figure 3(a). With each spiral those tri-
angles become smaller. At some point, we need fewer
steps for moving back and clearing the next layer of the
current triangle than for moving to the counterclock-
wise next triangle (that is for following the spiral pat-
tern). The boundary layers of the triangles have length
(n − 2i), (n − 2i − 1), (n − 2i − 1), and (n − 2i − 2).
The distance from the endpoint of the first triangle
to the vertex pixel is i, from the vertex pixel to the
second triangle i + 1. Walking back and to the next
layer infers a cost of layer length plus 2. Hence, for
(n − 2i + 2) < i + i + 1 ⇔ i > n+1

4 we switch from the
spiral pattern to clearing one triangle after the other.

For the spiral movements we have a cost of at most:

n2 · (n+ 1

4
)− n · n+ 1

4
−

n+1
4 −1∑
i=0

(2i)2

= (
1

4
− 1

48
)n3 +

9

16
n2 +

13

48
n+

1

16

The triangle clearing costs at most (the second term
bounds the cost for moving from one triangle to the
next):

4

n−1
4∑
i=1

2i(
n

2
− 2i+ 2) + 3(

n

2
+
n+ 1

4
+ 1)

=
1

24
n3 +

1

2
n2 +

17

24
n+

5

2

Altogether, the cost for our strategy, ALG, can be
bound by:

cost(ALG) ≤ 13

48
n3 +

17

16
n2 +

155

48
n+

39

16

Theorem 2 For the continuous snowblower problem
in n × n-squares with snow height D = 1 a solu-
tion with cost at most 13

48n
3 + 17

16n
2 + 155

48 n + 39
16 can

be found in polynomial time. For n ≥ 8 this yields
a 2-approximation. Asymptotically, we obtain a 13

8 -
approximation.

1st Computational Geometry Young Researchers Forum, 2012

(a) (b)
(c)

Figure 3: (a) Snow locations in a sqaure Sn after moving 1
(light gray), 2 (cross) and 3 (dark gray squares) spirals. (b)
Continuous movement of the snowblower for a non-reflex
vertex. One half of the snowblower is black, the other half
white. (c) Clearing a reflex vertex in a polyomino: the snow-
blower moves from position 1 to 6, all positions are given
with a direction, denoted by a small arrow.

5 Continuous Snowblower Problem

For the continuous snowblower problem each section of
the snowblower’s path infers a cost of the maximum of
distance covered and area swept through. We consider a
maximal allowed snow height of D = 1 for this problem.
Let si denote the position of the center point (with a
given orientation of the snowblower) and let SB(si) de-
note the set of all points of P covered by the snowblower
with the center point at si. Then:

cost(move from s1 to s2) =

max{length(C(s1, s2)), A({p ∈ P ∩ SB(x), x ∈ [s1, s2]})}

where C(s1, s2) denotes the curve followed while mov-
ing from s1 to s2.

As for the discrete case, we can give a lower bound
depending on each snow particle’s shortest distance to
the polygon boundary, let this be denoted by d(f). A
snow particle needs to be transported stepwise, each
time it will cover a distance of 1. Consequently, we
obtain:

dist(F) =

∫
F

d(f)df

For this paper we restrict to squares and polyomi-
noes. Hence, we need to give a strategy to cover reflex
and non-reflex vertices. We start with the latter, see
Figure 3(b) (the lower right corner is the vertex of the
polygon): the center point’s movement indicated by the
4 positions of the snowblower is continuous (x′(t) > 0
for positive t). The area covered by this and the mir-
rored movement for the upper triangle is 1. For the
distance covered by the center point, we describe the
curve the center point follows by a parametric equa-
tion: t→ (x(t), y(t)) = (t+ 1

2

√
1− (1− t)2, 1−t2), t ∈

[0, 1 − 1√
2
]. The distance the center point covers along

this parameterized curve is:

L(0, 1− 1√
2

) =

∫ 1− 1√
2

0

√
ẋ2 + ẏ2dt =∫ 1− 1√

2

0

√
(1 +

1− t
2
√

1− (1− y)2
)2 + (−1

2
)2dt

This integral can be solved numerically, and we obtain
L(0, 1 − 1√

2
) ≈ 0.664988. Consequently, the cost for

clearing a non-reflex vertex using the movement shown
in Figure 3(b) is max{1, 2 · 0.664988} = 1.329976 =:
cost(NR).

Squares. We consider a n × n square, Sn. Hence,
dist(Sn) = 1

6n
3, snow(Sn) = n2. Our strategy spirals

from the boundary to the center, each time reducing
the depth by 1. That is, we move along all pixels within
distance 1 to the boundary, applying the non-reflex pixel
strategy from above, then we move to the layer with
pixels of distance 2 to the boundary, and so on. Using
the non-reflex strategy described above we disperse the
snow initially located on one pixel onto 3 pixels on the
lower layer. These pixels are located along the angle
bisectors. Hence, we do not obtain the structure of 4
triangles as in the discrete case. Consequently, we keep
on moving in the spiral pattern. Each time a spiral is
performed, all snow is moved a distance of 1 closer to
the boundary, thus, we can decrease the depth of our
spiral. The movement from the end of one spiral to the
start of the next is not longer than n. The resulting
cost is:

bn
2 c∑
j=0

4(n− 2j − 2 + cost(NR))(
⌈n

2

⌉
)

+cost(NR) +
n2

2

≤ n3

3
+

13− cost(NR)

2
n2 + (5cost(NR)− 16

3
)n

−3cost(NR)

≤ n3

3
+

13− cost(NR)

2
+

4

3
n

Theorem 3 For the continuous snowblower problem in
n × n-squares with snow height D = 1 a solution with

cost at most n
3

3 + 13−cost(NR)
2 + 4

3n can be found in poly-
nomial time. For n ≥ 14 this yields a 3-approximation.
Asymptotically, we obtain a 2-approximation.

Polyominoes. To give a strategy for polyominoes
as well, we need to be able to treat reflex vertices. See
Figure 3(c) for an overview of the steps we perform: the
move from position 1 to 2 (both indicated in black, black
line) invokes a cost of π/4+1 (it clears a quadrant in the
light gray pixel, the other pixel is cleared completely),
the move from position 2 to 3 (along the red line) invokes

CG:YRF, Chapel Hill, NC, USA, June 16-20, 2012

a cost of
√

10/2, the move from position 3 to 4 (indicated
in gray) costs 1, we denote the length of the move from
position 4 to 5 by cr, finally, the move from position 5
to 6 invokes a cost of 1. After following these moves
from position 1 to 6 the three pixels around the reflex
vertex are cleared; we denote the sum of the steps by c0.
We still need to determine cr: the center point covers a
distance of π/4 along a quadrant of radius 1/2, the area
covered is ≤ 2(1− 1

2
√
2
), consequently, cr ≤ 2(1− 1

2
√
2
).

Our strategy is as follows: we clear the polyomino in
layers, starting with the pixels at the boundary. When-
ever we covered a segment between two vertices, we
move back (on the now cleared road) and move the snow
outside of the polygon. Thus, these pixels occur a cost
of at most 4 times their boundary distance (move forth,
back, forth and allow for the steps to the other layer).
The pixels that invoke the highest cost are those on a di-
agonal from a reflex vertex, marked in light gray in Fig-
ure 3(c). For the second light gray pixel we start with
clearing the quadrant again, for clearing this from the
first light gray pixel, we have a cost of c0, again. Before
we are able to clear the remaining snow from the second
light gray pixel, we need to clear the pixel labeled with
a cross (we do so, by shifting the snow to the first light
gray pixel again and following the steps of cost c0), the
cost of this clearing operation is not charged to the light
gray pixel, but to the cross pixel (and its cost is smaller).
After this, we move the remaining snow from the sec-
ond light gray pixel to the pixel marked with a cross,
then to the first light gray pixel, and need additional
c0 to move it out of the polyomino. Altogether, we pay
c1 := π/4+2+π/8+c0+3+1+cr+1+1+2+π/8+c0 =
10 + π/2 + 2c0. We can proceed like this, each time we
invoke the clearing strategy for the diagonal pixel closer
to the boundary twice, thus:

c0 = 3 +

√
10

2
+
π

4
+ cr

ci+1 = 2 · ci + 8 +
π

2
+ 2(i+ 1)

⇒ ci = 2 · i · c0 + 8 +
π

2
+ 2i

Altogether, the cost for clearing a pixel within dis-
tance i to the boundary is less or equal to (2·c0+8+ π

2 +

2)i = (16 +
√

10 + π + 2cr)i. Let vi =
∑
p∈P :d(p,δP)=i i.

As we use an average of i−1/2 for pixels within distance
i in the continuous distance lower bound, we have:

∫
F

l(f)df ≥ 1

2

k∑
i=1

vi

Consequently, we obtain the following bound for the

cost of our algorithm, ALG:

cost(ALG) ≤
k∑
i=1

(16 +
√

10 + π + 2cr) · vi

≤ 2(16 +
√

10 + π + 2cr) · dist(P)

We conclude:

Theorem 4 For the continuous snowblower problem in
polyominoes with snow heightD = 1 a (2(16+

√
10+π+

2cr))-approximation can be found in polynomial time,
cr ≤ 2(1− 1

2
√
2
).

6 Conclusion

We considered the snowblower problem for a fixed throw
direction. For the discrete case, introduced in [2] we im-
proved the approxmation factor. In addition, we gener-
alized the problem and formulated the continuous snow-
blower problem.

References

[1] E. M. Arkin, M. A. Bender, E. D. Demaine, S. P. Fekete,
J. S. B. Mitchell, and S. Sethia. Optimal covering tours
with turn costs. SIAM J. Comput., 35:531–566, 2005.

[2] E. M. Arkin, M. A. Bender, J. S. B. Mitchell, and V. Pol-
ishchuk. The snowblower problem. In WAFR, pages
219–234, 2006.

[3] E. M. Arkin, M. A. Bender, J. S. B. Mitchell, and V. Pol-
ishchuk. The snowblower problem. Comput. Geom.,
44(8):370–384, 2011.

[4] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Approxi-
mation algorithms for lawn mowing and milling. Compu-
tational Geometry: Theory and Applications, 17(1-2):25–
50, 2000.

[5] M. Held. On the Computational Geometry of Pocket Ma-
chining, volume 500 of Lecture Notes in Computer Sci-
ence. Springer, 1991.

