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Abstract—Both workload and fatigue are decisive for human
performance in current air traffic control (ATC), and, thus,
should closely be monitored to ensure safety. Well-validated
self-assessment and secondary-task performance measures are
available but are impractical for operational monitoring because
of intrusiveness and low efficiency. To overcome this gap, we
investigate ocular measures and head-yaw based on eye tracking as
potential non-intrusive indicators of workload and fatigue in ATC.
For validation, we conduct human-in-the-loop simulations with
licensed tower controllers in both single and multi remote tower
working conditions. Qualitative and quantitative comparisons with
conventional reference measures of workload and fatigue reveal
that, among others, the eye (blink) opening speed and head yaw
speed is a potential indicator of workload. Moreover, we confirm
blink closing & opening amplitude as well as blink closing speed
with reservations. Blink duration and blink opening amplitude
may qualify as a fatigue indicator.

Keywords—Workload, Fatigue, Indicator, Eye Tracking, Remote
Tower

I. INTRODUCTION

Safety is the primary concern of air navigation service
providers (ANSPs). The probability of error is increased under
high- and low-workload (over- and underload) as well as fatigue
conditions. Thus, we strive to ensure that air traffic controllers
(ATCOs) operate within workload and fatigue thresholds—
which enables us to comply with Regulation (EU) 2017/373 [1].

Measurements of workload and fatigue suffer from crucial
problems: using operator self-assessment with queries is in-
trusive, hence, this is not feasible as a permanent instrument
during operations; social-desirability bias may entice operators
to understate their workload or fatigue; and the subjective
measures are imprecise and not calibrated.

In this paper, we investigate several candidate indicators of
workload and fatigue under varying working conditions (and
with different ATCOs). By this, we aim at the management
of workload and fatigue and the avoidance of safety-critical
working conditions. This work contributes to an evidence-based
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approach that is of increasing importance with higher levels of
automation or the introduction of so-called paradigm-shifting
innovations.

A current example in LFV operations are Multi Remote
Towers (RTs), an operational concept that enables the provision
of air traffic services (ATSs) to two or more airports from a
remote location by one ATCO [2]. The possibility to operate
at several airports at a time yields a major change in working
conditions [3]—it is expected that this will alleviate current
problems of underload and fatigue at small airports with only a
few movements a day. Yet, it is hard to provide objective feed-
back from ATCOs to system designers and decision makers—at
the same time regulators require a reliable assessment to justify
the safety of remote-tower operations. The potential combina-
tion of subjective ratings with independent empirical measures
would increase the capability to evaluate any suggested system
design as well as to manage stress and fatigue as required by
Regulation (EU) 2017/373. Fatigue Risk Management (FRMS)
can increase the accuracy of risk predictions through the use of
empirical indicators.

In different areas, ocular and head measures have been
identified as potential indicators for workload and fatigue [4]–
[6]. The validation of such indicators in ATC is not as advanced
as in other fields, for example, in driver assistance. Empirical
indicators of fatigue have so far not been addressed.

We assume a valid indicator to quantify signs of workload
and/or fatigue evoked by the prevailing working conditions.
Our investigation aims at indicators tackling two different use
cases: predicting workload and/or fatigue caused by (1) a
transition between different setups including modifications to
working position design, procedure, task definition, working
time (between-conditions) and (2) current activities and task
variation described as a function of time considering different
ATCOs (within-subject).

We deem single- and multi-remote-tower scenarios in Remote
Tower Centers (RTCs) as a suitable case because of higher
task difficulty for multiple configuration compared to single.
As investigated by Friedrich [7], the increase in task diffi-
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culty combined with a higher number of traffic movements
is expected to modify the taskload perceived by ATCOs. For
validation, we compare the empirical measures with the current
standard: the subjective, intrusive measurements. Consequently,
we employ a simulation study with ATCOs working in an RTC
under varying taskload conditions with realistic traffic load. We
choose eye-tracking and body-movement measurements as our
candidate empirical indicators (for eye tracking we use a Smart
Eye system, which is non-intrusive, see Subsection IV-D3). We
investigate the accuracy of these measurements for predicting
workload and fatigue responses to variations of taskload.

II. RELATED WORK

A. Workload & Fatigue Definition

Workload is a subjective quality, Hart and Staveland [8]
defined it as “a hypothetical construct that represents the
cost incurred by a human operator to achieve a particular
level of performance” (while taskload measures the objective
demands). ICAO [9] describes fatigue as “a physiological state
of reduced mental or physical performance capability resulting
from sleep loss, extended wakefulness, circadian phase, and/or
workload [...] that can impair a person’s alertness and ability
to perform safety related operational duties.”

B. Fatigue

ATCOs require sufficient levels of alertness to pay continuous
attention to the air traffic situation. As a factor influencing
alertness, fatigue is considered a safety hazard in air traffic as
it can lead to decreased situational awareness and increases the
likelihood of human error and attention lapses [10]. In addition
to sleep or shift-related causes [11], taskload characteristics
also influence fatigue [10]. Both high and low taskload are
seen as problematic. While overload may exceed the capacity
of a fatigued operator [9], underload leads to boredom and
monotony [12], resulting in fatigue. While no physiological
measures are integrated in daily operations today, Hu and
Lodewijks indicate a good fatigue-detecting quality by camera-
based ocular measures [5]. Light fatigue is associated with an
increase of blink frequency per time unit [13]. The transition to
severe fatigue is accompanied by an increase in blink duration.
Moreover, the proportion of time during which the eyes are
closed at least 80% (PERCLOS) is considered a robust fatigue
measure [6].

C. Mental Workload Measurement

Mental workload cannot be measured directly. Two major
approaches can be observed: subjective studies in which self-
rated ATCO workload is assessed on a scale (e.g. NASA-
TLX [8], ISA [14], CHS [15]), and objective studies that aim
to find observable physiological and behavioral measurements
that correspond to the workload currently experienced [16].

Ocular metrics based on eye-tracking measurements have
been identified as a valid indicator for mental workload in both
ATM applications [17] (see Peissl et al. [16] for a survey, and

applications from other areas, e.g., maritime navigation [18] or
nuclear power plants [19]). For background on the pupillary
system, we refer to Beatty and Lucero-Wagoner [20]; in his
PhD thesis, Klingner [21] provided detailed information on
methods for measuring cognitive load using pupillary dilations;
Yamanaka and Kawakami [22] evaluated pupil diameter as a
method to evaluate mental stress by comparing it to electrocar-
diogram measurements; similarly, Causse et al. [23] evaluated
eye-fixation measures.

Electrophysiological measurements (EEG/ERP) showed that
increased mental workload was accompanied by lower P3b
while instructions were given to the pilots [24]. The processing
of the instructions leads to a depletion of the cognitive re-
sources. The EEG-based index proposed in [25] is widely used
for cognitive control-behavior assessment in air traffic control
and other areas.

Studies [26] performed on a driving simulator uncover that
head-movement parameters could be used as indicators for a
quantitative evaluation of mental workload.

D. Remote Tower Research on Workload and Fatigue

Friedrich et al. [7] used eye-tracking data from different
multiple RT experiments with varied traffic load and workplace
design. They aimed to analyze the influence of multiple airport
configuration on information gathering, highlighting the lack
of studies correlating subjective and objective measurements in
a multiple RT environment. In the simulation runs, all ATCOs
observed three airports: one main airport with 50% of the traffic
load, and two smaller airports with 25% traffic load each. They
showed that traffic load increases the subjective ATCO work-
load (assessed using the ISA scale), and studied whether the
workload is correlated with the eye-tracking metrics they had
chosen (dwell time, fixation duration, and transition frequency).
Kearney et al. [27] performed a study with remotely qualified
ATCOs that compared workload between tower operations in a
conventional tower and multiple remote towers using NASA-
TLX. The authors identified significant differences in ATCO’s
mental demand, temporal demand, effort, and frustration.

Josefsson et al. [28] presented a first subset of factors that
potentially drive the complexity of the traffic situation RTC
ATCOs have to handle. The authors of [29] validated indicators
of workload predictability in conventional and remote towers (in
single and multiple conditions) and showed that—while simply
using the number of ATCO tasks (like clearances and commu-
nication) does not yield a necessary condition for an increase
in workload rating—indicators that integrate the communication
time related to the ATCO tasks are necessary conditions, that is,
each increase in workload rating is accompanied by an increase
in these indicators. A part of that study is a field study in
a conventional tower at Bromma airport, where the average
workload rating was higher in the first three hours, during which
snow sweeping occurred, than in the final hour with peak traffic
(with 4, 5, and 9 movements in the first three hours, and 27
movements in the final hour). This is in contrast to the results
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TABLE I. Hypothesis on Candidate Indicators

Candidate Indicator Workload Fatigue References
Blink Duration - + [4], [13]

Blink Frequency + + [6], [13]
PERCLOS ◦ + [4], [6], [31]

Fixation Duration - ◦ [7], [32], [33]
Head Yaw Speed + ◦ [26]

Eye Blink Opening Amplitude ◦ ◦
Eye Blink Opening Speed ◦ ◦

Eye Blink Closing Amplitude ◦ - [4]
Eye Blink Closing Speed ◦ - [4]

Pupil Diameter + + [34], [35]
Note: “+” indicates a positive,“-” a negative and “◦” no results found

of Friedrich et al. [7], who showed that workload increases with
the amount of traffic in a multiple remote configuration.

Furthermore, to our best knowledge, fatigue has not yet been
evaluated in single and multiple RT conditions.

III. RESEARCH HYPOTHESIS

In Sections I and II, we underlined that several empirical
indicators might be promising in predicting workload and/or
fatigue. We use workload as defined in [8], see Section II.
The terms sleepiness and drowsiness are covered by the term
fatigue1. Based on the literature review, we compiled a list
of potential indicators that include measures of ocular and
head movements and are referred to as candidate indicators.
The term “ocular measures” covers those of human physiology
and behavior of the eyeball (including, e.g., pupils), eye gaze
and eyelids movement. Indicators related to the movements of
the eyelids are referred to by the term “blink”. The chosen
candidate indicators and the expected behavior in relation to
workload and fatigue are listed in Table I. The table entries
“+” (positive) and “-” (negative) designate the type of relation
with either mental workload or fatigue. The list of candidates
includes known indicators, but also new potential candidates
that underscore our exploratory motivation in this study. It is
important to consider a possible non-linearity of indicators,
which is not addressed here. This concerns, for example, high
workload which the ATCO might tackle successfully (yielding
longer fixations), and a high workload that the ATCO struggles
to engage with because he/she is too stressed (e.g., yielding
shorter fixations) [30].

IV. METHODS

A. Evaluation Method

With the candidate indicators identified in Table I, we aim to
study the validity of these indicators for workload and fatigue
using human-in-the-loop simulation. The principle approach is
to use reference indicators for comparison and hence validation.
Our measure of workload and fatigue refer to the current
standard: ISA, KSS, and PVT (see section IV-D). Our analysis

1For the sake of simplicity, the terms sleepiness and drowsiness are combined
in this study under the generic term fatigue.

methods rely on statistic correlation analysis for quantifying
the coincidence of both candidate and reference indicators
for workload and fatigue. Moreover, we identify concurrent
increase and decrease of workload by applying sufficient and
necessary conditions as performed in [29]. These conditions
help identifying non-linear relations between reference and
candidate indicators such as time delay. It is consistent with the
philosophy that workload is a composite construct in which the
ATCO’s response manifests itself in one or more physiological
or behavioral signs.

The exposure of professional ATCOs to both single and mul-
tiple remote-tower working conditions creates task difficulties of
varying degrees and, in combination with an increased number
of traffic movements at multiple airports, varying taskload
(Subsection IV-C) and, in consequence, workload [7], [28].
These conditions help us to validate the candidate indicators
considering different work conditions and degrees of task dif-
ficulty as part of our use case between-conditions. The second
use case within-subject aims at the prediction of workload
and fatigue as a function of time considering the validity of
candidate indicators across several ATCOs. Between-conditions
are suitable for the comparison of entire conditions over the long
term, whereas within-subject addresses the temporal dynamics
of variability between the points of sampling. Hence, the latter
provides more details about the present situation including tasks
and activities that might have evoked workload or fatigue. This
is consistent with the case of system designers who wish to
evaluate a change in the concept of operations and, therefore,
seek to trace local peaks in workload and fatigue to their
causes in the ATCO’s current activities. Distinguishing and
comparing these two use cases aims at considering responses
of the ATCO’s physiology and behavior to changing working
conditions that become visible over the long run versus those
that become visible within minutes.

Besides the justification for these two cases just given, there
is also a statistical reason for distinguishing: The Simpson’s
Paradox2 [36]. Both use cases help us to separate the two main
sources of variability: experimental condition and subject. Thus,
grouping data helps to avoid the paradox.

B. Simulator-Based Data Collection

We used the SAAB simulator with the implementation of the
LFV Multi Remote Tower concept of operations of 2019 that
provides the operation of two airports at a time by one ATCO.
The SAAB simulator consists of two working positions, a visual
presentation of the out-of-the-window view, two radar screens,
a digital flight strip system, a voice communication system, a
visual control unit that provides keys for adjusting the visual
presentation, and a multi-purpose display (used for triggering
the test procedures such as secondary task testing). The visual
presentation provides a display of (one to) two airports, where

2“Simpson’s Paradox is a statistical phenomenon where an association
between two variables in a population emerges, disappears or reverses when
the population is divided into subpopulations” [36]
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the vertical field of view and the zoom factor can be adapted
according to the operators needs in the present situation. This
simulation provides us with a controlled environment, where we
can trigger specific taskload conditions more accurately than in
a field study. We ensure realistic radio communication by using
two pseudo pilots. See Figure 1 for the simulation environment
in multiple configuration.

C. Independent Variable

We vary the taskload by means of three operational concepts
as principle experimental conditions, exposing participants to
varying taskload ranging between low and medium. We simulate
two Swedish airports: Örnsköldsvik (ESNO) and Sundsvall-
Timrå (ESNN). We distinguish three experimental conditions:

• Single. ESNO and ESNN in single configuration with
control zone (CTR) and terminal maneuvering area (TMA)

• Multi CTR (MCTR). ESNO and ESNN in multiple
configuration with CTR only

• Multi TMA (MTMA). ESNO and ESNN in multi config-
uration with CTR and TMA (this includes a bigger area
of responsibility than MCTR with more clearances and,
hence, more tasks)

The traffic load increases from single to multi conditions—we
combine the traffic from ESNO and ESNN in multi. The number
of commercial movements is varied (2 or 4 in single mode, 6 in
multi mode), all scenarios feature one VFR movement and one
runway inspection each. The taskload increases from MCTR to
MTMA because of the additional TMA area of responsibility.

Six scenarios were developed whereby each experimental
condition is represented by two scenarios with varying aircraft
types, callsigns and small variances in the timing of departures
and arrivals. Each simulation run lasted 65 to 70 minutes,
depending on the individual control behavior of the ATCOs.
The study design complies to a cross-over design with each
participant accomplishing all six scenarios for a within-subject
comparison of the experimental conditions.

D. Dependent Variables

1) Reference Workload Indicator:
• Instantaneous Self Assessment (ISA). The ISA queries

provide a reference variable of workload for validating the
candidate indicators [14]. The ISA scale is a five-point
numerical scale, which can be used to assess workload
in real-time. We assessed the workload by querying the
ATCOs for their verbal rating according to the ISA scale
every three minutes, the self assessment was triggered by
an audio signal to which the ATCOs answered verbally.

2) Reference Fatigue Indicators:
• Karolinska Sleepiness Scale (KSS). The KSS is used to

measure the subjective level of fatigue at a specific point
in time [37]. The KSS is a nine-point numerical scale,
varying from 1 (extremely alert) to 9 (extremely sleepy—
fighting sleep). The KSS is a subjective measure that we
queried before (pre) and after (post) each simulation trial.

• Psychomotor Vigilance Task (PVT). The PVT [38], [39]
is a software-based sustained reaction-time task over three
minutes and participants are asked to respond to emerg-
ing stimuli on a screen as quickly as possible. Reaction
time in milliseconds (ms) was logged, lapses (reaction
time >500ms) and false starts (reaction time <200ms)
are excluded for further analysis. Slower reaction times
indicate hereby fatigue. The median reaction time per PVT
run is used for further analysis. The PVT is an objective
measure that we queried before (pre) and after (post) each
simulation trial.

Both KSS and PVT are well-validated instruments measuring
fatigue and sleepiness [40].

3) Ocular and Head-Yaw Measures: We used a Smart Eye
eye-tracking system with six infrared cameras mounted in an
ATCO-centered semicircle at a distance of 60 to 100 cm at
the working desk (see Figure 1). The system samples the head
position/movement, eyelid movements and eye-gaze data with
a frequency of 60Hz providing ocular and head-yaw measures
of the ATCOs, respectively: Blink Frequency, Blink Duration,
PERCLOS, Pupil Diameter, Fixation Duration, Fixation Fre-
quency, Amplitude and Speed of Eyelid Closing and Opening,
Head Yaw, and Head Yaw Speed.

The eye-tracking data log was then processed using in-house
developed software (implemented in Java v.15.0.2) that extracts
the desired indicators from the log for time synchronization,
data smoothing, visualization and further statistical analysis.
For smoothing, we use a moving average with a time-linear
sampling in 10-second steps.

E. Participants

In total, we consider three licensed ATCOs with valid unit en-
dorsements for remote towered airports Örnsköldsvik (ESNO)
and Sundsvall-Timrå (ESNN), performing six simulation runs
each. Hence, we have eye-tracking data for three participants
with 18 runs. The participants had a mean age of 51.3 years
(SD = 7.39), with a mean experience of 23.3 (SD = 10.19).
For all these 18 runs we recorded ISA, PVT and KSS data.

F. Necessary and Sufficient Conditions

We use different analysis methods, in particular, we are
also interested in predicting increases and decreases of ATCO
workload. As described in our previous work [29], we do
not only look at correlation but at necessary and sufficient
conditions:

• A measure M forms a necessary condition for workload
increase (decrease) if every workload rating increase (de-
crease) is accompanied by an increase (decrease) in M.

• A measure M constitutes a sufficient condition for work-
load increase (decrease) if every increase (decrease) in M
also yields an increase (decrease) in the workload rating.

If we can identify a sufficient measure M for workload increases
(decreases), observing M would be enough: each increase
(decrease) of M will yield—and, hence, predict—an increase
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Figure 1: Simulation environment in multiple configuration.

(decrease) in workload rating. A measure that is both a sufficient
condition for workload increases and decreases would yield us
a perfect predictor for workload changes.

V. RESULTS

A. Workload

1) Necessary and Sufficient Conditions: We conjecture that
an increase in the workload rating is accompanied by a decrease
in the Fixation Duration, we expand that by conjecturing that a
decrease in workload rating is accompanied by an increase in
the Fixation Duration.

While workload is measured every three minutes, we have
way more data points from Fixation Duration in the eye-tracking
data, even after smoothing (we smooth over the interval -180s
to 0s w.r.t. the workload measurement). Hence, we consider the
“trend” in the Fixation Duration of a time interval: the slope
of a regression line for the Fixation Duration observations over
the time interval. With that, we refine our conjecture:

1) Each decrease in workload rating (during the period from
ti to ti+1) is accompanied by a positive trend for Fixation
Duration in the complete three-minute interval [ti, ti+1],
or in the first or last 1.5 minutes of that interval.

2) Each increase in workload rating (during the period
from ti to ti+1) is accompanied by a negative trend for
Fixation Duration in [ti, ti+1] or [ti+1, ti+2] (the rationale
behind considering the following period is that an ATCO
anticipates later tasks and mentally prepares for them).

As an example for this hypothesis, we consider Figure 2:
between minutes 27 and 30, we observe a decrease in workload.
According to point 1 from our conjecture, this decrease should
be accompanied by a positive trend for Fixation Duration in
the complete three-minute interval [27, 30], or in [27, 28.5] or
[28.5, 30]. The red regression line gives the Fixation Duration
trend for this three-minute interval. We can clearly observe the
positive trend.

The hypothesis holds for the multiple configuration scenarios
(MTMA and MCTR), except for two of these simulation
runs where we see one exception each—in these runs, we
generally observe very little workload variations. Moreover, if

Figure 2: Example for part 1 of our conjecture: a workload decrease
between minutes 27 and 30 is accompanied by a positive trend for
Fixation Duration in that interval. Top: Fixation Duration data (to allow
for visual distinction, we do not show all data points, but the smoothed
data over the interval -180s to 0s w.r.t. the workload measurement)
with a red trend for the full interval [27:00-30:00], bottom: workload
measurements according to ISA scale. We highlight [27:00-30:00] with
a white strip.

we have a zig-zagging pattern of the workload measurement,
the succeeding three-minute period cannot be the valid criterion
for workload increases (that is, workload increases must then
be accompanied by a negative Fixation Duration trend in the
same period), to not create a contradiction with a succeeding
workload decrease.

We performed a similar analysis (necessary conditions for
workload increase and decrease) using pupil diameter. However,
for Pupil Diameter, we observe three exceptions (which cannot
all be assigned to single or multiple configuration).

Our result suggests that the trend for the Fixation Duration
can be a necessary indicator for changes in the workload
rating. This would strengthen the observation from [7], [33].
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However, the converse is not true: we can often observe Fix-
ation Duration trends that are not accompanied by a workload
increase/decrease, that is, we do not have a sufficient indicator.
The same holds for the Pupil Diameter.

2) Correlation Analysis: We perform a correlation analysis
according to Spearman for the quantification of the relation
between ISA and the chosen candidate indicators. The in-
dicators were samples with moving average using the same
parameters as in section V-A1 (-180 to 0s). To distinguish
such variances associated with the experimental conditions from
those associated with the subject, we use two 2-way multilevel
models for correlation. The results of the correlation analysis
are shown in Table II, listing the Spearman’s rank correlation
coefficients (ρ) and p-values for the between-condition and
within-subject. The multilevel correlation between-conditions
and within-subjects is based on sample sizes ranging between
50 and 70 as well as between 111 and 134 respectively per
group.

In the between condition, Head-Yaw Speed, Right Blink
Closing Speed as well as Right Pupil Diameter show a very sig-
nificant relation (ρ = .956, p = .003; ρ = −.956, p = .003; and
ρ = −.876, p = .022; respectively). In the within-subject group,
Left Blink Closing Amplitude and Left Blink Closing/Opening
Speed show significant correlation with coefficients ranging
between ρ = −.1126 and ρ = 0.119. Both Head-Yaw Speed,
Left Blink Opening Amplitude, and Right Blink Opening
Speed show a very significant relation (ρ = .156, p = .003;
ρ = −.150, p = .004; and ρ = .142, p = 0.007; respectively).

B. Fatigue

We perform a correlation analysis according to Spearman for
the quantification of the relation between PVT, KSS and the
chosen candidate indicators. The approach is similar to the ISA
correlation analysis as described in section V-A2. The candidate
indicators are averaged over a period of 30 min and paired
with the respective KSS and PVT sample. The first 30 minutes
of a run were assigned to the pre-test KSS and PVT samples
and the last 30 minutes to the post-run samples. The multilevel
correlation between-conditions and within-subjects is based on
sample sizes ranging between 6 and 12, respectively.

The results are shown in Table II for PVT and KSS. With two
exceptions, the coefficients show non-significant correlations
between both reference and candidate indicators for between-
condition and within-subject. The exceptions are the Blink
Duration with a very significant relation to KSS for the between
condition (ρ = .938 and p = .006) and the Right Blink Opening
Altitude with simple significance (ρ = .343 and p = .044) for
within-subject.

VI. DISCUSSION

In Table I, we have identified a series of candidate indicators.
Our results in Section V can confirm some of them: we are able
to identify promising indicators.

A. Workload

The analysis of eye-tracking measures yields that the trend
for the Fixation Duration (and Pupil Diameter) may act as
a necessary indicator for workload increases and decreases,
but not as a sufficient indicator: We showed that changes in
workload rating, increase or decrease, are accompanied by
a negative or positive trend for Fixation Duration in certain
intervals, respectively. In particular, this analysis allowed us to
include non-linear relations, e.g., a delayed connection (taking
anticipation of tasks into account), which we do not discover
by a conventional correlation test (e.g., Pearson or Spearman
Correlation).

The correlation of ISA and candidate indicators yields rank
correlation coefficients and significance results. While within-
subject significant correlations are low (below 20%), between-
condition correlations attain 80% or more. The difference can
be explained by the different number of samples that cause the
correlation coefficient to appear smaller with increasing sample
sizes. Nevertheless, we identified several promising indicators
that behave as expected in Table I, namely Head-Yaw Speed
and Right Pupil Diameter, and those where no expectation was
assumed, namely Right Eye Blink Opening/Closing Speed, Left
Eye Blink Closing/Opening Amplitude, and Left Eye Blink
Closing/Opening Speed.

An unexpected candidate is the highly significant correlation
of Head-Yaw Speed with ρ = .956 for between-condition
and ρ = .156 for within-subject. An explanation for the
high significance could be the additional traffic movements
in multiple configuration, inducing more visual activity for
information acquisition by the ATCO. Another effect originates
from the Multi-Remote-Tower design, showing the airports
ESNN and ESNO on the visual presentation next to each other
and requiring the ATCO to yaw the head more frequently.
Concluding, Head-Yaw Speed is caused by visual activity, in-
dicating the workload evoked by visual information acquisition
of the ATCO. The head-yawing is likely related to the saccadic
velocity of the eye which is a known indicator of workload [16].
The group within-subject implies the correlation to even be
sensitive to those changes that are associated with the condition.
Moreover, the head-yaw speed is the only indicator that was
independently identified as significant indicator for both ISA
between-group and within-subject comparisons; this indicates
a low chance of a random result. For this reason, we assume
that the head-yaw speed is valid with a high probability for
both subjects and conditions. Following on from this, it can
be stated that both Left and Right Blink Opening Speed was
identified as significant for within-subject comparisons which
suggests corresponding validity.

Three (partly very) significant correlations, namely the Left
Blink Opening/Closing Amplitude and the Left Blink Closing
Speed, refer only to the left eye but not to the right. This
asymmetry contradicts our expectation about the symmetry
of ocular measurements. The most probable reason might be
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TABLE II. Spearman Rank Correlation ρ and p-values of ISA, PVT and KSS with candidate metrics (∗p ≤ .05;∗∗p≤ .01)

ISA PVT KSS
Candidate Indicator between-condition within-subject between-condition within-subject between-condition within-subject

ρ p ρ p ρ p ρ p ρ p ρ p

Blink Duration .115 .828 −.027 .608 −.588 .220 −.019 .916 .938∗∗ .006 .154 .379
Blink Frequency .225 .669 −.085 .103 −.279 .593 −.144 .418 −.517 .294 −.271 .116

PERCLOS .225 .669 −.082 .114 −.579 .228 −.120 .501 −.341 .509 −.219 .206
Fixation Duration −.606 .203 −.098 .061 .453 .367 .209 .237 −.440 .382 .143 .414
Head-Yaw Speed .956∗∗ .003 .156∗∗ .003 −.751 .085 −.246 .169 .086 .871 .076 .670

Left Blink Closing Amplitude −.385 .452 −.112∗ .033 .751 .085 .090 .615 −.237 .651 −.095 .587
Left Blink Opening Amplitude −.731 .099 −.150∗∗ .004 .127 .810 −.006 .973 .277 .595 −.116 .508

Left Blink Closing Speed −.541 .267 .106∗ .043 .517 .294 −.191 .280 .351 .495 .156 .371
Left Blink Opening Speed .676 .141 .119∗ .024 −.714 .111 −.237 .178 .362 .481 .066 .705

Right Blink Closing Amplitude −.050 .926 −.033 .528 .215 .683 −.313 .072 −.362 .481 −.189 .277
Right Blink Opening Amplitude −.103 .846 −.040 .442 .215 .683 −.121 .495 −.314 .544 −.343∗ .044

Right Blink Closing Speed −.956∗∗ .003 −.070 .180 .751 .085 .163 .359 −.038 .942 .189 .279
Right Blink Opening Speed .496 .317 .142∗∗ .007 −.076 .887 .014 .939 −.126 .812 −.170 .329

Left Pupil Diameter .595 .213 .052 .333 −.237 .651 −.005 .979 .188 .721 −.254 .148
Right Pupil Diameter −.876∗∗ .022 .073 .167 .413 .415 .272 .126 −.063 .905 −.065 .717

asymmetries in the quality of the eye-tracking measurement that
might lead to disturbing variances in the sampled indicators.

B. Fatigue

The analysis of KSS and PVT was consistent with the
correlation analysis conducted for ISA. The results yielded
one candidate indicator in the between-condition case—Blink
Duration—and one candidate indicator in the within-subject
case—Right Blink Opening Amplitude. The increase of the
blink duration with increasing KSS score rates complied per-
fectly with the expectations highlighted in Table I, while there
was no expectation for the right blink opening amplitude.
Nonetheless, the correlation is plausible and should be investi-
gated in further detail. However, the correlations only appear in
the case for the subjective KSS but not for the objective PVT.
Perhaps participants did not rate their fatigue, but rather the
variations in taskload. Thus, a single run was rated with a higher
KSS not due to higher fatigue but due to higher monotony and a
higher fatigue expectation. This biased the results, and it can be
questioned if Blink Duration is rather a measure of monotony.
Other potential fatigue indicators such as PERCLOS could not
be proven to be related significantly by means of our data. This
result contradicts [5]. A possible explanation could lie in the
rather short simulation runs of the study. Since our simulations
lasted only 65 to 70 minutes, this may have been too short to
induce fatigue and associated physiological signs. Moreover,
a measurement of participants in a laboratory setting might
lead to better alertness than in real situations. As participants
knew they were monitored, they were perhaps motivated to
perform as a good as possible. Combined with short scenarios,
this potentially resulted in such a low level of fatigue that
was insufficient for validation. Additionally, the more traffic
movements, the more activity contributes to avoiding underload
of participants. The only condition that possibly induced fatigue
was the single condition with a low number of movements,
which had little effect on the results.

C. Limitations

Generally, the quality of right-eye measurements is lower
than that of left-eye measurements—given that all participating
ATCOs are right-handed and the usage of the pen may visually
obstruct the line of sight between right eye and the two right-
hand IR cameras of the eye-tracking system. We deem this
unavoidable. Our study has a couple of further limitations:

• We have a relatively low number of ATCOs. And related to
this, a small number of sample points that the correlation
analysis relies on. The smaller the sample size, the greater
the likelihood of obtaining a spuriously large correlation
coefficient in this way. For overcoming, we account only
for those indicators that are significant.

• The simulation environment provides an artificial working
environment, the ATCOs do not show a fully genuine
working behavior.

• The environment may also yield a motivational and sub-
jective bias on ISA, PVT and KSS.

VII. CONCLUSION & OUTLOOK

We investigate candidate indicators for workload and fatigue
under varying taskload conditions stemming from single and
multiple configuration in remote-tower simulations. We are able
to identify a set of potential indicators—indicators that have
not been investigated extensively before. To study the relation,
we use both correlation tests and necessary conditions suc-
cessfully. We conclude that Head-Yaw Speed, Right/Left Blink
Closing/Opening Amplitude, Right/Left Blink Opening Speed,
and Right Pupil Diameter are budding indicators for workload;
Blink Duration is a budding indicator for fatigue; and that the
trend for Fixation Duration and Pupil Diameter can be necessary
indicators for changes in the workload rating. Our quantitative
results are reliable because of their high maturity; the necessary-
condition based results yield a direction for further validations.

In this study, we considered each of the candidate indicators
separately. In future research, combining several ocular indi-
cators may even enable us to detect subtle differences in eye
movements that can be associated with changes in fatigue in
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workload. In future work, we also plan to perform extensive
trials including multiple configuration over longer time periods,
targeting to capture increased fatigue signs and thresholds for
acceptable workload.
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