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Abstract
We consider a variant of the 2-watchmen problem that ensures that every point in a polygon P is
seen from more than one direction: we search for routes W1, W2, such that for each p ∈ P there
exist w1 ∈ W1, w2 ∈ W2 that see p and such that p ∈ w1w2 ⊂ P. We show that finding the two
routes that are optimal with respect to the min-max criterion is NP-hard in simple polygons and
present a 2-approximation algorithm for this case; moreover, we provide a polynomial-time algorithm
for computing the two optimal routes with respect to the min-sum criterion in convex polygons.
Finally, we discuss a generalized version of the problem with more than two watchmen.

1 Introduction

In the classical Watchman Route Problem, introduced by Chin and Ntafos [3, 4], we ask
for the shortest route inside a given simple polygon P, such that all points of P are visible
from at least one point on the route (this can be solved in polynomial time [14, 15]). In this
context, a point p ∈ P sees another point q ∈ P if the line segment pq is fully contained in P.

Carlsson et al. [2] raised the m-watchmen problem as a natural generalization: we are
given m watchmen (with or without given starting points) for which we aim to find routes,
such that each point in P is visible from at least one of the m routes. Two common objectives
for this problem are to minimize the total length of all m watchman routes (called min-sum)
and to minimize the length of the longest route assigned to any watchman (called min-max).

When considering m watchmen, we only require each point to be seen at least once,
without any guarantees on any kind of robustness. However, in practice, we may aim to make
our routes robust against potential issues. For example, one or more watchmen may fail,
especially in remote regions. Additionally, observing a point from multiple angles can improve
observation quality. This is crucial to make the theoretically intriguing routes applicable for
real-world scenarios. In this paper, we aim to enhance the coverage quality by guaranteeing
a point to be seen from multiple directions.
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Problem Definition. Let P be a simple polygonal domain. A route W in P is called a
watchman route if every point in P is visible from some point on W , and we denote its length
by |W |. A point p ∈ P is segment-guarded by two points w1, w2 ∈ P if p lies on the line
segment w1w2, and p is visible to both w1 and w2, i.e., w1w2 is fully contained in P (while
the watchmen do not need to be at w1 and w2 at the same time).

Two routes W1, W2 in P are segment watchman routes for P if for every point p ∈ P
there exist two points w1 ∈ W1 and w2 ∈ W2 such that p is segment-guarded by w1 and w2.
We consider the following two problems:

▷ Problem 1 (Min-Max Segment Watchmen). Given a polygonal domain P, find segment
watchman routes W1, W2 such that maxi |Wi| is minimized.

▷ Problem 2 (Min-Sum Segment Watchmen). Given a polygonal domain P, find segment
watchman routes W1, W2 such that

∑
i |Wi| is minimized.

In the same manner, we define a point p ∈ P to be triangle-guarded (or k-gon-guarded)
if there exist points wi on routes Wi, i = 1, 2, 3 (or i = 1, . . . , k), such that the segments
wip, ∀i, are fully contained in P and do not share a point other than p. With this, we define
the related min-max and min-sum optimization problems analogously to Problems 1 and 2.

Note that, due to limited space, we omit the proofs of statements marked by (⋆).

Related Work. Carlsson et al. [2] showed that the m-watchmen problem is NP-hard in
simple polygons and provided a polynomial time algorithm for histograms. Polynomial time
algorithms for different polygon classes, using either the min-sum or the min-max objective,
have also been presented in [1, 9, 11, 12]. Recently, Nilsson and Packer [10] proposed a
5.969-approximation algorithm to compute min-max 2-watchman routes in simple polygons.

The robustness requirement we employ for watchman routes in this paper is closely
related to the problems of two-sensor visibility and triangle guarding for stationary guards
introduced by Efrat et al. [6] and Smith and Evans [13], respectively. Both considered two
polygons Q, P with Q ⊆ P, where the subpolygon Q should be guarded by guards placed
in P (assuming that Q’s boundary is transparent). For Efrat et al. a point p ∈ Q is 2-guarded
at angle α by two guards g1, g2 if ∠g1pg2 ∈ [α, π − α] and both guards see p. Smith and
Evans defined a point p ∈ Q to be triangle-guarded by g1, g2, g3 if p is seen by each of the
three guards and is contained in the triangle spanned by them. Another variant of robust
guarding has recently been established by Das et al. [5]; and a variant of robustness for a
single watchman by Langetepe et al. [8].

2 Preliminaries and Key Lemma

Let P be a simple polygon with n vertices. We assume that P does not contain vertices with
an internal angle of exactly 180◦, i.e., no three consecutive vertices are on the same line. If P
does contain such a vertex, we can simply remove it.

Let W1, W2 be segment watchman routes for P. From the definition, we obtain:

▶ Observation 2.1. Each of W1 and W2 is a watchman route for P.

▷ Claim 2.2. Every convex vertex of P is visited by one of W1 or W2.

Proof. Let v be a convex vertex of P. Then v lies on a line segment w1w2 with w1 ∈ W1 and
w2 ∈ W2, and the segments vw1, vw2 are contained in P. As the interior angle at v is strictly
smaller than 180◦, any line segment in P that contains v has v as one of its endpoints. ◁



A. Brötzner, O. Filtser, B. J. Nilsson, C. Rieck and C. Schmidt 33:3

Figure 1 Min-max segment watchman routes may or may not need to overlap.

We now establish sufficient conditions for two routes to be segment watchman routes; an
example is illustrated in Figure 1.

▶ Lemma 2.3 (The Conditions Lemma). Two routes W1 and W2 are segment watchman
routes for P if the following conditions hold:
1. Every convex vertex is visited by one of W1 or W2.
2. Both W1 and W2 visit the visibility polygon of each convex vertex.
3. Both W1 and W2 are simple and relatively convex (i.e., a route does not cross itself, and

for any two points inside the region enclosed by the route, their shortest path is also
contained within the enclosed region).

Proof. First, we show that Condition 2 implies that W1 and W2 are watchman routes.
Assume that there is a point p ∈ P that is not seen by Wi, i.e., no point of Wi lies in p’s
visibility polygon. Hence, Wi is fully contained in one of the pockets P′ of p’s visibility
polygon (a subpolygon of P in which no point is visible from p). Extend the pocket’s
window w (the line segment that separates P′ and P \ P′) into a maximal line segment ℓ

contained in P. Without loss of generality, let ℓ be a vertical line segment with P′ to its
right. As p ∈ ℓ, ℓ \ w is either a polygonal edge with a convex endpoint not seen by Wi, or it
splits P into at least two subpolygons; see Figure 2. At least one of the subpolygons, say P′′,
also lies to the right of ℓ. Wi cannot see any convex vertex in P′′, yielding a contradiction.

pp

w wP′

P′′

P′

Figure 2 ℓ \ w is either an edge of P with a convex endpoint (left), or it splits P into at least
two subpolygons, one of which also lies to the right of ℓ (right).

We now show that Conditions 1–3 imply that W1 and W2 are segment watchman routes.
Consider a point p ∈ P. Since both W1 and W2 are watchman routes, there exists at least
one point on W1 and at least one point on W2 that p sees. Consider the two wedges defined
by the angles from which p is viewing W1 and W2, as visualized in Figure 3: let F1 be the
maximal wedge bounded by two rays starting at p, such that for every ray ρ in F1 there is
a point w ∈ W1 in this direction that p sees. Note that because P is simple, F1 is a single
wedge. The wedge F2 is defined analogously for W2.
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Figure 3 The wedges F1 and F2 define the angles from which p is viewing W1 and W2, respectively.
If F3 or F4 is larger than 180◦, then there is a convex vertex on the left side of ℓ which is not visited.

Each of the two wedges F1, F2 covers either 360◦ (if p lies on or within the relatively
convex route) or less than 180◦ (because both routes are relatively convex). If at least one
of F1, F2 covers 360◦ around p, then p is segment-guarded: assume that F2 covers 360◦

around p, and let w1 be a point on W1 that sees p. Then the ray from w1 in the direction
of p intersects W2 at point w2 that sees p, and thus p is segment-guarded by w1w2.

Hence, assume that neither F1 nor F2 covers 360◦ around p. Let F3 (and possibly F4) be
the maximal wedge(s) bounded by two rays starting at p, such that for every ray ρ in F3
(and F4) there is no point w ∈ W1 or w ∈ W2 in this direction that p sees. Then the plane
around p can be split into up to four wedges, depending on whether F1 and F2 intersect:
F1, F2, F3 and F4; or F1, F2, F3, and one wedge with the overlap of F1 and F2.

We argue that neither F3 nor F4 can cover more than 180◦. Without loss of generality,
assume that F3 covers more than 180◦. Consider a line ℓ through p in F3 that does not
contain an edge of the boundary of P, and assume that ℓ is a vertical line and that both F1
and F2 are on the right side of ℓ. Let ab be the maximal line segment on ℓ that is contained
in P. Then ab splits P into at least two subpolygons, and at least one of them, P′, is on the
left side of ab. Because P is simple and both W1 and W2 do not cross ab, there are no points
of W1 and W2 in P′. However, P′ must contain a convex vertex v. This yields a contradiction,
as by Condition 1, v needs to be visited by at least one of the watchman routes. ◀

We define the relative convex hull of a route in a simple polygon P as the simple polygon Q
such that, for any two points inside the region enclosed by the route, the geodesic connecting
them is also contained within Q. Specifically, we refer to the boundary of Q as the relative
convex hull. Hence, if a route is relatively convex, it coincides with its relative convex hull.

In Lemma 2.3, the conditions imply that W1 and W2 are segment watchman routes.
However, there exist segment watchman routes that do not fulfill these conditions, see Figure 4.

On the other hand, we obtain an if-and-only-if statement for optimal watchman routes:

▶ Observation 2.4. Let P be a simple polygon. Two routes W1 and W2 are optimal segment
watchman routes for P, if and only if the conditions from Lemma 2.3 hold.
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p

w1

w2

W2

W1

Figure 4 W1 and W2 are segment watchman routes (e.g., p lies on w1w2), but do not fulfill the
conditions of Lemma 2.3. They are not optimal, e.g., W1’s relative convex hull (in this case the
boundary of the polygon) is shorter than W1, and this relative convex hull together with W2 are
segment watchman routes.

3 Min-Max Segment Watchman Routes in Simple Polygons

We sketch a reduction showing that the problem is NP-hard even in simple polygons.
Complementarily, we provide a polynomial-time 2-approximation.

3.1 Computational Complexity

We reduce from Multiway Number Partitioning [7]. In particular, for our purposes, we
ask to partition a set of numbers into two sets of equal sum; also referred to as Partition,
which is known to be weakly NP-hard.

▶ Theorem 3.1 (⋆). Problem 1 is NP-hard even in simple polygons.

Proof sketch. Construct a star-shaped polygon as in Figure 5. The length of a spike’s bound-
ary (i.e., the path v2i−1, v2i, v2i+1) represents the value αi from the Partition instance φ,
and let T denote the sum of all values. Both watchmen start in the bottommost convex
vertex v0, and thus need to return to it. It is easy to see that a min-max segment watchman
route of length T/2 + ε exists iff there exist a partition of φ into two sets of equal sum. ◀

v0

v1 v2n+1

v2i

Figure 5 High-level idea of the type of polygon utilized in the NP-hardness reduction.
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3.2 Approximation Algorithm
Let k be the number of convex vertices of a given polygon P. We enumerate the convex
vertices in counterclockwise order v0, . . . , vk−1, with v0 chosen arbitrarily. In the following,
we assume, without loss of generality, that indices are counted modulo k.

Let vi and vj be two different convex vertices and let Cij be the shortest route that visits
the convex vertices vi, . . . , vj−1. Cji is then the shortest route that visits the convex vertices
vj , . . . , vi−1. Clearly, Cij and Cji can be computed in linear time. Let CP be the shortest
route that visits all the convex vertices of P. CP can also be computed in linear time.

Let Dij be the shortest route that starts and ends at vi, and that sees all the convex
vertices vj , . . . , vi−1. The route Dji is then the shortest route that starts and ends at vj ,
and that sees all the convex vertices vi, . . . , vj−1. Each of Dij and Dji can be computed
in O(n3) time by modifying the algorithm of Jiang and Tan [15]. Let DP be the shortest
floating watchman route in P (that is, the shortest watchman route without a given starting
point). We can compute DP in O(n4) time [14, 15].

Let H(T ) denote the relative convex hull of a route T in P. We define Wij
def= H(Cij ∪Dij),

connecting the two routes at vi and taking the relative convex hull of them.
We construct our approximate solution by choosing the pair

(W1, W2) = arg min
i ̸=j

{
max{|Wij |, |Wji|}, max{|CP|, |DP|}

}
.

By Lemma 2.3, (W1, W2) is a feasible solution for the segment watchman routes problem.
Denote by OPT(P) the size of an optimal solution for P. We claim the following result.

▶ Theorem 3.2. max
{

|W1|, |W2|
}

≤ 2 · OPT(P).

Proof. Let W ∗
1 and W ∗

2 be two segment watchman routes with max
{

|W ∗
1 |, |W ∗

2 |
}

= OPT(P).
Without loss of generality, we may assume that W ∗

1 and W ∗
2 are as short as possible.

If W ∗
1 or W ∗

2 visits all convex vertices of P, then (CP, DP) is an optimal solution to the
problem and the theorem therefore holds. Hence, for the remainder of this proof, we assume
that W ∗

1 visits some fixed convex vertex vi and W ∗
2 visits a different fixed convex vertex vj .

Since W ∗
1 visits vi and it either sees or visits the convex vertices vj , . . . , vi−1 by construc-

tion, we have that |Dij | ≤ |W ∗
1 |. Similarly, W ∗

2 visits vj and it either sees or visits the convex
vertices vi, . . . , vj−1, yielding |Dji| ≤ |W ∗

2 |. We distinguish the following cases.

W ∗
1 and W ∗

2 do not intersect. Because W ∗
1 and W ∗

2 do not intersect, the two convex ver-
tices vi and vj can be chosen so that W ∗

1 visits vi, . . . , vj−1 by increasing index (modulo k)
and sees the remaining ones, whereas W ∗

2 visits vj , . . . , vi−1 and sees the remaining ones.
From this, it follows that |Cij | ≤ |W ∗

1 | and |Cji| ≤ |W ∗
2 |. We obtain that

max
{

|W1|, |W2|
}

≤ max
{

|H(Cij ∪ Dij)|, |H(Cji ∪ Dji)|
}

≤ max
{

2|W ∗
1 |, 2|W ∗

2 |
}

= 2 · max
{

|W ∗
1 |, |W ∗

2 |
}

= 2 · OPT(P).

W ∗
1 and W ∗

2 intersect. Because W ∗
1 and W ∗

2 intersect and together visit all the vertices,
we have |CP| ≤ |W1 ∪ W2| = |W ∗

1 | + |W ∗
2 | and |DP| ≤ min{|W ∗

1 |, |W ∗
2 |}, as both W ∗

1
and W ∗

2 are watchman routes. We obtain that

max
{

|W1|, |W2|
}

≤ max
{

|CP|, |DP|
}

≤ max
{

|W ∗
1 | + |W ∗

2 |, min{|W ∗
1 |, |W ∗

2 |}
}

≤ 2 · max
{

|W ∗
1 |, |W ∗

2 |
}

= 2 · OPT(P). ◀

In fact, we may also let W2 = CP to avoid computing a floating shortest watchman route.
The proof also gives a 2-approximation if we use the min-sum measure for the two routes.
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4 Min-Sum Segment Watchman Routes in Convex Polygons

We examine the min-sum variant of the segment watchman routes problem in convex polygons.

▶ Lemma 4.1 (⋆). For convex polygons, each of the two optimal min-sum segment watchman
routes visits a consecutive set of convex vertices.

▶ Corollary 4.2. Problem 2 can be solved in polynomial time in convex polygons.

5 Conclusion and Future Work

In this abstract, we investigated segment watchman routes in simple polygons. We identified
sufficient conditions for two watchman routes to be segment watchman routes, and developed
a 2-approximation algorithm for the min-max and the min-sum measure. Furthermore,
we argued that the problem of computing min-max segment watchman routes for simple
polygons is NP-hard, and concluded that computing min-sum segment watchman routes for
convex polygons is possible in polynomial time. We plan to extend the study of Problem 2
to general simple polygons.

The NP-hardness of Problem 1 for three and k watchmen follows easily from an adaption
of the proof of Theorem 3.1. We aim to investigate these two problems for k > 2 in the future.
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