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Abstract
We consider the watchman route problem for multiple watchmen in staircase polygons, which are
rectilinear x- and y-monotone polygons. For two watchmen, we propose an optimal algorithm that
takes quadratic time, improving on the cubic time of the trivial solution. For m ≥ 3 watchmen, we
explain where our approach fails.

1 Introduction

The watchman route problem asks for a shortest route inside a polygon, such that every
point in the polygon is visible to some point on the route. It was first introduced by Chin
and Ntafos [2], who showed that the problem is NP-hard for polygons with holes, but may
be solved efficiently for simple polygons. Given a starting point, an optimal route can be
computed in O(n3) time [8], and finding a solution without a fixed starting point takes a
linear factor longer [7].

The Watchman Route Problem has also been considered for multiple watchmen (a problem
introduced by Carlsson, Nilsson, and Ntafos [1]). For histograms, efficient algorithms have
been proposed for minimizing the total route length (min-sum) [1] and the length of the
longest route (min-max) [6]. Here, we are interested in only two watchmen. For this problem,
Mitchell and Wynters [4] proved NP-hardness for the min-max objective in simple polygons.
Recently, Nilsson and Packer presented a polynomial-time 5.969-approximation algorithm
for the same objective in simple polygons [5].

In this paper, we consider a quite restricted class of polygons, staircase polygons, that for
two watchmen allows us to assign the responsibility for guarding any edge solely to one of
the two watchmen (and seeing all of a polygon’s boundary is for two watchmen sufficient to
see the polygon). Additionally, we show that the two routes can be separated by a diagonal
between two reflex vertices. This enables a polynomial-time algorithm to compute the
optimal two watchman routes (for both the min-max and the min-sum objective). Despite
staircase polygons being so restricted, some of the observations we make do not hold for
three or more watchmen. This indicates a discrepancy in the computational complexity
between the watchman route problem for one or two watchmen and for multiple watchmen.

2 Notation and Preliminaries

A polygon is called rectilinear (or orthogonal) if all its edges are parallel to the x- or the
y-axis of a given coordinate system, and x-monotone (y-monotone) if every line that is
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orthogonal to the x-axis (y-axis) intersects the polygon in exactly one connected interval.
A staircase polygon is a rectilinear polygon that is both x- and y-monotone. We call the
polygonal chains of boundary edges that lie above and below the interior the ceiling and the
floor of the polygon, respectively. We consider the watchman route problem for multiple
watchmen in staircase polygons.

▶ Multiple Watchman Route Problem (m-WRP). Given a polygon P , and a number of
watchmen m, find a shortest set of m routes, with respect to the min-sum or min-max
criterion, such that every point in P is seen from at least one of the routes.

We denote the length of a route w by ∥w∥, and refer to a solution of the m-WRP as a
set of m watchman routes in P . For simplicity, we will refer to a watchman routes also as
a watchman. In the following, we consider the m-WRP for the min-sum and the min-max
criterion. Any statement on optimal watchman routes holds for either objective, unless stated
otherwise.

Let P be a staircase polygon that is not 2-guardable with point guards (as then none
of the watchmen would need to walk). As P is x- and y-monotone, we make the following
observation:

▶ Observation 2.1. A watchman w with leftmost x-coordinate xmin and rightmost x-
coordinate xmax sees at least all points p ∈ P with x(p) ∈ [xmin, xmax].

The analogous statement holds for the bottommost y-coordinate ymin and the topmost
y-coordinate ymax of watchman w. Watchman w thus sees the contiguous part of the ceiling
between ymin and xmax, and the contiguous part of the floor between xmin and ymax.

We denote the extensions of edges that are incident to reflex vertices as cuts, and identify
so-called essential cuts. For a single watchman, a simple polygon is seen if all its essential cuts
are visited. Clearly, visiting all essential cuts is a necessary condition for a set of watchman
routes. A staircase polygon has at most four essential cuts (see Figure 1(a)): the leftmost
vertical extension of the floor vleft, the lowest horizontal extension of the ceiling hbot, the
rightmost vertical extension of the ceiling vright, and the topmost horizontal extension of the
floor htop. By “visiting” such an extension, we mean that a watchman route has a point to
the left of vleft, below hbot, to the right of vright, or above htop. Note that not necessarily all
of these four extensions are essential cuts. For the sake of simplicity, we will nevertheless
refer to them as such.

For one watchman, an optimal solution is given by the shortest route that visits all four
essential cuts. An example is shown in Figure 1(a). By the following theorem proven by
Chin and Ntafos [2], such a solution may be computed in linear time.

▶ Theorem 2.2. (Theorem 2 [2], Chin & Ntafos) A shortest watchman route in simple
rectilinear polygons can be found in linear time.

For multiple watchman routes, the watchmen share the responsibility of seeing P . Thus,
we aim to find a “good” distribution of responsibilities among the watchmen. For two
watchmen, we prove that the polygon may be split into two subpolygons such that an optimal
solution to the 2-WRP corresponds to an optimal solution to the WRP in each subpolygon.

3 Computing an Optimal Solution for Two Watchmen

In this section, we investigate the 2-WRP. Let us first state some properties of two optimal
watchman routes in staircase polygons. Due to limited space, we omit the proof of Lemma 3.1.
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Figure 1 Optimal solutions for (a) one watchman, (b) two watchmen, (c) three watchmen.

▶ Lemma 3.1. Let (w∗
1 , w∗

2) be an optimal solution to the 2-WRP in a staircase polygon P .
Then, the following properties hold:
1. w∗

1 and w∗
2 do not have any common x- and y-coordinate.

2. w∗
1 visits the essential cuts hbot, vleft, and w∗

2 visits the essential cuts htop, vright.
3. There exists a pair of reflex vertices (r, r′) with r on the floor and r′ on the ceiling, such

that rr′ separates w∗
1 and w∗

2, see Figure 1(b).

In the following, we always assume that an optimal solution (w∗
1 , w∗

2) obeys Properties 1–3
of Lemma 3.1. In particular, w∗

1 lies below and to the left of w∗
2 .

▶ Lemma 3.2. In an optimal solution to the 2-WRP in a staircase polygon, for every polygon
edge there exists a watchman that sees the edge completely.

Proof. Let (w∗
1 , w∗

2) be an optimal solution, and consider w∗
1 . As soon as it crosses the

extension of a horizontal floor edge e, it sees e completely since nothing blocks the visibility
between w∗

1 and e along e’s extension. Similarly, w∗
1 sees a vertical edge on the ceiling

completely as soon as it crosses the edge’s extension. Before crossing the extension, w∗
1 does

not see the respective edge at all. Hence, for any horizontal floor edge (vertical ceiling edge) e,
if w∗

1 sees any point on e, then it sees all points of e. Similarly, for any horizontal ceiling edge
(vertical floor edge) e, if w∗

2 sees any point on e, then it sees all points of e. Assume w.l.o.g.
that there is a horizontal floor edge e such that no point on e is seen by w∗

1 . Then, w∗
2 sees e

completely as otherwise there are points on e that are not seen by any of w∗
1 and w∗

2 . ◀

With this, we may split two optimal watchman routes in a particular way.

▶ Lemma 3.3. Let (w∗
1 , w∗

2) be an optimal solution in a staircase polygon P . There exists a
unique diagonal between a vertex on the floor and a vertex on the ceiling that cuts P into
two subpolygons P1 and P2 such that w∗

1 sees P1, and w∗
2 sees P2.

Proof. By Lemma 3.2, every edge is completely seen by a watchman. For a chain of
consecutive edges on the floor or ceiling, there cannot be an alteration in the responsibility
of the watchmen: Let ei, ei+1, ei+2 be three consecutive edges (on the floor or ceiling). If
one watchman sees ei, ei+2 completely, then it also sees ei+1. Hence, there exist vertices on
the floor and the ceiling such that w∗

1 sees all edges that lie below and to the left of them
completely, and w∗

2 sees all edges that lie above and to the right of them completely. We call
such vertices breaking points and show that there exist two breaking points, one on the floor
and one on the ceiling, that see each other—these define the unique diagonal. Assume that
this is not the case. Let bf be the lowest-leftmost breaking point on the floor, and bc be the
upper-rightmost breaking point on the ceiling. W.l.o.g., assume that all breaking points on
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the floor lie to the upper-right of the breaking points on the ceiling (in particular, bf lies to
the upper-right of bc).

Since bf and bc do not see each other, there exist some edges incident to a reflex vertex r

that block the visibility. Assume that these edges lie on the ceiling. Then, the horizontal edge
incident to r lies above bc and below bf , and is seen by w∗

2 (by definition of bc). Hence, w∗
2

sees the vertical floor edge v that is hit by the horizontal extension through r (as described
in the proof of Lemma 3.2), and thereby also sees the convex vertex on the lower end of v,
contradicting the choice of bf (being the lowest-leftmost breaking point on the floor). ◀

We present an algorithm that finds an optimal split, and thus computes an optimal
solution for two watchmen in O(n2) time. Observe that Lemma 3.2 only holds for two
watchmen. For three or more watchmen, some edges may only be seen partially by each
watchman in an optimal solution. An example is shown in Figure 1(c), see the magnified
part. The blue watchman is in charge of monitoring a part of a vertical floor edge above
the red watchman’s visibility region. The yellow watchman does not see this edge at all
and would have to walk very far to reach the vertical extension of this edge. Therefore, an
optimal solution for m ≥ 3 watchmen may induce a split of the polygon’s floor and ceiling
into more than m parts each, such that every part is seen by a single watchman. This means
that a watchman may be “in charge of” more than one contiguous part of the boundary on
the floor and ceiling, respectively.

3.1 A Quadratic-Time Algorithm for Two Watchmen
To compute an optimal solution, because of Lemma 3.3, we consider all diagonals between
vertices on the floor and on the ceiling. Any such diagonal splits P into two subpolygons.
For each subpolygon, we compute an optimal watchman route using a modified version of
the linear-time algorithm proposed by Chin and Ntafos [2], and then combine the two routes
to a solution for the 2-WRP in P .

As there are at most quadratically many diagonals to consider, this procedure trivially
yields a cubic-time algorithm. However, maintaining a similar structure of the subpolygons
by dealing with the diagonals in a certain order allows us to compute many of the watchman
routes in amortized constant time.

To this end, we iterate over the vertices on the floor. For each floor vertex pf , we compute
all its diagonals to points on the ceiling, in clockwise order around pf . If pf is a convex vertex,
then all diagonals have a negative slope. If pf is a reflex vertex, some diagonals have positive
slope. However, we do not need to consider all diagonals with positive slope, but only those
two that are followed or preceded by a positive-slope diagonal in the clockwise order. We
call those, and the diagonals with negative slopes, candidate diagonals; see Figure 3. Every
candidate diagonal splits P into two subpolygons, P1 below and P2 above the diagonal.

▶ Lemma 3.4. Any diagonal that is not a candidate diagonal induces a solution that is at
least as long as the solution induced by some candidate diagonal.

Proof. First, note that a diagonal of positive slope is spanned between two reflex vertices.
Consider w.l.o.g. a non-candidate diagonal pf pc, as seen in Figure 2. Then there is a convex
vertex p′

c above pc that does not yield a diagonal of pf because y(pc) < y(pf ). The subpolygon
P2 above pf pc has the horizontal line through p′

c as an essential cut. Hence, the watchman
route in P2 has points below this cut. There exists a subpolygon induced by a candidate
diagonal (incident to pc and with the other endpoint p′

f below pf ) that also has the horizontal
line through p′

c as an essential cut. For this cut, the watchman route in the subpolygon
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Figure 2 A diagonal with positive slope (red) that is not a candidate: An optimal watchman
route in the subpolygon P2 (marked in gray) needs to visit the same essential cut (dashed line) as
an optimal watchman route in the subpolygon induced by pcp′

f (purple).

above the diagonal pcp′
f remains the same, and the watchman route in the subpolygon below

is not longer than the one induced by pf pc. ◀

Now we compute a solution for each candidate diagonal in the following manner:

Step 1: Consider a diagonal with negative slope. Cutting along this diagonal creates
only convex vertices in each subpolygon, hence all four essential cuts per subpolygon
are rectilinear. The watchman routes touch these extensions, but do not cross them [2].
We compute the optimal solutions for the subpolygons induced by the first diagonal in
clockwise order in linear time by Theorem 2.2. In addition, we compute two shortest-
path-tree data structures [3]. One is rooted at the first reflex vertex on the floor and
stores the shortest paths to all other floor vertices, the other one is rooted at the first
reflex vertex on the ceiling and stores the shortest paths to all other ceiling vertices.
Then, for each diagonal in order, we update the solution in the following way. Moving
from one diagonal to the next (i.e., moving from one vertex on the ceiling to the next)
alters either the essential cut vright(P1) of P1, or the essential cut hbot(P2) of P2. During
this movement, any reflex vertex on the ceiling that was an anchor point can only be
released once per vertex pf , and they are released from right to left. Similarly, any reflex
vertex on the floor can be added as an anchor point only once per vertex pf , and they get
added from left to right. Hence, the number of updates per vertex pf is at most linear.
When updating the route w1 in P1, we move from one vertical extension vright(P1) to the
next one v′

right(P1). We use the shortest-path-tree of the floor to check whether vertices
on the floor get added to, and the shortest-path-tree of the ceiling to check whether
vertices on the ceiling get released from the route. This can be done in amortized constant
time [3].
Step 2: If pf is a reflex vertex, we need to consider also the two candidate diagonals
with positive slope. Here, the subpolygons’ essential cuts differ from those of a staircase
polygon: There is exactly one non-rectilinear essential cut, namely the extension of the
diagonal. We may nevertheless compute an optimal solution, using the algorithm by Chin
and Ntafos [2]. This algorithm defines a set of essential cuts, along which the polygon
is reflected. Computing the shortest path from one of these essential cuts to its copy
yields the shortest watchman route in the original polygon. Since there are at most five
essential cuts, we can try all combinations of subsegments of these essential cuts and
apply the Chin-and-Ntafos reduction which takes linear time in each of these constant
number of cases.

EuroCG’25



34:6 Two Watchmen’s Routes in Staircase Polygons

pf

Figure 3 The candidate diagonals of a reflex vertex pf : there are two candidate diagonals with
positive slope (red), and several candidate diagonals with negative slope (purple).

Thus, the computations for each vertex pf take amortized linear time. As we do this for
every vertex on the floor, there are linearly many vertices to consider. With this, we get an
optimal solution to the 2-watchman route problem in staircase polygons.

▶ Theorem 3.5. An optimal solution to the 2-WRP in staircase polygons can be computed
in O(n2) time.
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