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The classical Art Gallery Problem asks for the minimum number of guards that achieve visibility coverage
of a given polygon. This problem is known to be NP-hard, even for very restricted and discrete special cases.
For the case of vertex guards and simple orthogonal polygons, Cuoto et al. have recently developed an exact
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1. INTRODUCTION
The classical Art Gallery Problem (AGP) asks for the minimum number of guards
placed inside of a polygon that suffice to perceive the entire polygon (interior and
edges). For several classes of polygons and variants on the placement of guards, this
problem was shown to be NP-hard (e.g., Lee and Lin [1986]). Originally, interest from
the theoretical side focused on extremal results, like the classical bn3 c bound first
established by Chvátal [1975] and very elegantly proven by Fisk [1978].

On the practical side, good solutions to Art Gallery Problems have gained in
importance, e.g., for measuring (the interior of) buildings using a static laser scanner.
For these measuring tasks, positions of the laser scanner must be identified that
ensure coverage of the given environment, e.g., a production hall, a tunnel or a bridge
construction; see Figure 1. Hence, a solution to the AGP or good upper bounds enable
the company to reduce the working hours, both during the actual scan process on site
and for the postprocessing (scan matching etc.). This also applies to lower bounds:
not only do they allow quality estimates of feasible solutions, they are also of crucial
importance for contract bidding, allowing an estimate of the necessary expenses for
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personnel and equipment that cannot be avoided, neither by the company, nor its
competitors.

(a) (b)

Fig. 1: A 360◦ laser scanner of inmetris3D placed in a production hall (a) and in a tunnel with
the resulting scan data (b). (All images courtesy of inmetris3D.)

Our Contribution. We develop a primal-dual approach for general AGPs in arbitrary
polygons with holes, in which guards can be placed anywhere, such that the entire
interior of the polygon is guarded. Our method computes a sequence of lower and
upper bounds on the optimal number of guards until—in case of convergence and
integrality—eventually an optimal solution is reached. Our algorithm is based on a
formulation of the problem as a (covering) linear program. It solves the problem using
a cutting plane and column generation approach, i.e., by solving the primal and dual
separation problems. Computational results show the usefulness of our method.

The rest of the paper is organized as follows. In the following Section 2, we describe
related work; notation is provided in Section 3. In Section 4, the main part of our
algorithm, using linear programming, is presented, together with a discussion of
geometric aspects of separation. Section 5 discusses implementation aspects of the
algorithm and presents heuristic ingredients. We evaluate our implementation using
a set of test instances in Section 6. Problems of convergence for degenerate cases are
discussed in Section 7. In Section 8, we present some geometry-based cutting planes.
Finally, in Section 9 we discuss possible implications and extensions.

2. RELATED WORK
Art Gallery Problems. The question on which the Art Gallery Problem (see Urrutia

[2000], O’Rourke [1987], and Shermer [1992]) is based was posed by Klee: how many
(stationary) guards are needed in an art gallery in order to ensure that the guards can
see all the exhibits? That is, one asks for the minimum number of immobile guards,
G(P ), that cover all of P . The maximum G(P ) over all polygons of n vertices is denoted
by g(n). Two points in a polygon are defined to be visible to each other if the line
connecting the points lies inside of P .

Chvátal [1975] was able to show that bn3 c (stationary) guards are sometimes
necessary and always sufficient so that every point of a polygon with n vertices is
visible from at least one guard position (g(n) ≤ bn3 c). Fisk [1978] gave a short and
simple proof for Chvátal’s result. The function g(n) was also considered for more
restricted classes of polygons, e.g., Kahn et al. [1983] established g(n) ≤ bn4 c for
orthogonal polygons.

While the work of Chvátal and Fisk concentrated on a sufficient number of guards
and resulted in the Art Gallery Theorems mentioned above, the Art Gallery Problem
asks for a minimum set of points (the guards, G) in a given polygon P , such that
every point in P is visible from at least one point in G. O’Rourke and Supowit [1983]
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were able to show that this problem is NP-hard by a reduction from 3SAT, for guards
restricted to be located on vertices, and for polygons with holes. Lee and Lin [1986]
were able to prove NP-hardness for simple polygons. This result was extended to point
guards by Aggarwal (see O’Rourke [1987]); Schuchardt and Hecker [1995] gave NP-
hardness proofs for rectilinear simple polygons, both for point and vertex guards.

Algorithms for placing g(n) guards that see the entire polygon have also been
considered. Avis and Toussaint [1981] gave an algorithm based on Fisk’s triangulation
proof of Chvátal’s theorem to place bn3 c guards in O(n log n) time.

Another approach is to consider the closely related problem of covering polygons.
The part of a polygon that is visible to a single guard is a star-shaped polygon, so that
covering with star-shaped pieces corresponds to placing a set of guards. Keil [1986]
gave an O(n2) algorithm for covering a horizontally convex orthogonal polygon with
star-shaped polygons, implying that for this restricted class of polygons, a minimum
set of guards can be found in polynomial time. For other types of covers, e.g., covering
with rectangles, the resulting number is not the optimal set of guards, but may yield
an approximation.

Beside various classes of polygons to be guarded (orthogonal polygons, polygons with
or without holes etc.), variations on the abilities of the guards have been examined. In
the classical Art Gallery Problem the guards are immobile, i.e., bound to a single point
that may be located at any possible position inside of P ; these are called point guards.
If the feasible locations are restricted to vertices, we deal with vertex guards. Moreover,
guards may have the ability to move along certain structures. Edge guards are allowed
to move along an edge and survey all points visible to some point on this edge. Instead
of patrolling along an edge, diagonal guards move along diagonals; mobile guards are
allowed to use both. See Shermer [1992] for these definitions.

Alternatively, the guarding task may be varied: The guards may only be required to
survey the edges (and not the interior) of the polygon [Laurentini 1999].

In recent years, there has been a growing amount of work dealing with algorithmic
aspects of the AGP. Even for the restricted case of vertex guards and simple polygons,
Eidenbenz et al. [2001] established lower bounds on the achievable approximation
ratio. On the other hand, approximation algorithms are only known for restricted
versions of the problem (e.g., Efrat and Har-Peled [2006]) and allow for a logarithmic
approximation ratio; one of the reasons is that both the set of possible guard locations
and the set that is to be covered have infinite cardinality, and no easy reduction to
discrete sets is known.

Considering a single mobile guard leads to the Watchman Problem, which was first
formulated by Chin and Ntafos [1988]. It asks for the shortest tour of a watchman
inside of a polygon, such that each point of the polygon becomes visible at least
once along this tour. This problem is NP-hard for some classes of polygons, but
also polynomially solvable for several classes. For example, Chin and Ntafos showed
that the watchman problem is NP-hard for polygons with holes (even for rectilinear
polygons and holes) and gave polynomial algorithms for rectilinear polygons [Chin
and Ntafos 1988], as well as for general simple polygons [Chin and Ntafos 1991].

Lower Bound on the Number of Guards. As described above, the AGP is NP-hard.
For some classes of polygons, Eidenbenz et al. [2001] showed NP-hardness of getting
better constant approximation factors below 1 + δ for an appropriate δ > 0. Therefore,
the practical and theoretical relevance of the problem makes it important to consider
approximation algorithms and good heuristics. To determine the quality of such
solutions we need a good reference point given by a lower bound. We will present such
a lower bound in the next sections.
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Previous work mostly consists of heuristics [Amit et al. 2007] with good practical
performance. To the best of our knowledge, there is little work on good lower bounds.
Amit et al. [2007] are the only ones to consider a lower bound for the general AGP, with
the entire polygon to cover. They use the lower bound to compare heuristic solutions,
with the guards taken from different candidate sets, like vertices and more enhanced
points.

Their lower bound is based on the visibility polygons of a certain set of points.
Considering the visibility polygons of two points, we know that we need at least two
guards to survey these points in case the visibility polygons are disjoint. Therefore, a
candidate point set S is chosen and we build a graph with vertices for these points,
plus edges in case of intersecting visibility polygons. Then we search for the maximum
independent set. Because finding a maximum independent set is NP-hard, Amit et al.
use a greedy strategy: iteratively add the node with the smallest degree to the set I,
and remove this node and its neighbors from S. This greedy approximation algorithm
has a performance guarantee of only 1/(|E|/|V | + 1) [Jansen and Margraf 2008]. The
cardinality |I| of the set I gives a lower bound on the number of guards necessary to
cover S, and thus a lower bound on the guards needed for P . Amit et al. include convex
vertices and midpoints of edges incident to two reflex vertices to the candidate sets.

Lower bounds for the version of the Art Gallery Problem with guards surveying only
the edges of the polygon are given by Bottino and Laurentini [2008]. The authors build
an initial lower bound and apply rules to find indivisible edges in order to improve
this bound. The computation of the initial lower bound is based on the same approach
as the bound of Amit et al.: the maximum independent set problem for a graph with
nodes for the edges of P and edges in case of non-disjoint weak visibility polygons is
to be solved. A weak visibility polygon of an edge e is the polygon whose points see at
least one point of e, points of the integer visibility polygon see all points of e. Bottino and
Laurentini use an exact branch-and-bound algorithm for the maximum independent
set problem. Furthermore, the authors aim at the improvement of the bound. For this
purpose they determine the indivisible edges: an edge is indivisible if there exists an
optimal set of guards such that the edge is entirely observed by at least one guard.
There is a simple rule to determine such an edge: in case the weak and the integer
visibility polygon of an edge coincide, the edge is indivisible. Bottino and Laurentini
give some more sophisticated rules.

Exact Solutions for Vertex Guards. The work by Couto et al. [2007; 2008; 2009]
considers exact solutions for a special case of the Art Gallery Problem. Compared to
the general problem that we consider, their variant has two additional restrictions:

(1) polygons are simple, i.e., they have no holes, and
(2) guards may only be placed on polygon vertices.

Their algorithms therefore benefit from a small and finite set of covering points in
combination with various ways of reducing the candidate set of points that need to
be covered. Their approach is based on a set-cover integer program, applied to a grid
discretization, which is iteratively refined if necessary. They are able to bound the
number of iterations, but have to solve an instance of the set-cover problem in each
iteration. In experiments with polygons of up to 200 vertices [Couto et al. 2008], and
later, with a variety of discretization strategies of up to 1000 and 2500 vertices [Couto
et al. 2009], they are able to solve these instances within 100–1000 seconds (for the
different strategies and 1000 vertices.) Note that instance sizes and computation times
are not comparable to our results, as we consider a more general problem.
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3. DEFINITIONS AND NOTATION
We consider a given polygon P , possibly with holes. For a point p ∈ P the visibility
polygon V(p) is the (star-shaped) set of all points of P visible from p. A guard set G ⊂
P covers P if ∪g∈GV(g) = P . The Art Gallery Problem asks for such a guard set of
minimum cardinality. Note that visibility is symmetric, i.e., p ∈ V(q) ⇐⇒ q ∈ V(p).
The inverse of V(·) describes all points that can see a given point p. This is easily
confirmed to be

V−1(p) := {q ∈ P : p ∈ V(q)} = V(p) .

The points of P have two roles in this problem. Firstly, points are selected to place
guards on them. To reflect this, we refer to them as guard positions. Secondly, every
point needs to be covered by the visibility polygon of at least one guard. An uncovered
point therefore certifies (witnesses) that a solution is infeasible. We refer to points that
we watch for being covered as witnesses.

In the algorithm discussion, we frequently use vectors indexed by P , e.g., x =
(xp)p∈P . For such a vector and a set Q ⊆ P , we use the notation

x(Q) :=
∑
p∈Q

xq ,

which is fairly common in the area of linear programming.
For linear programs, the separation problem is defined as follows: given an instance

of a linear programming problem, e.g., max{cTx | Ax ≤ b} and a point y, determine
whether y belongs to the polyhedron {x | Ax ≤ b} or not, and in the latter case,
present a violated constraint. Depending on whether we consider the primal or dual
linear program, we speak of the primal separation problem or dual separation problem.
It is known that the ability to solve the separation problem in polynomial time is
sufficient to efficiently solve a problem to optimality [Grötschel et al. 1981], even if
the formulation contains an infinite number of constraints. This result is based on
the ellipsoid method, which is not usable in practice. However, the simplex method
is practically efficient, and is able to incorporate additional constraints or variables
quickly [Schrijver 1986]. It is possible to solve large problems by starting with a
relaxation, and then iteratively solve the primal and/or dual separation problem to
add in primal or dual constraints that are violated in the current solution. In case of
primal separation, the approach is called the cutting-plane method (as it cuts away
infeasible solutions through new constraints). In case of the dual, it is called column
generation, as adding violated dual constraints corresponds to introducing new primal
variables (i.e., columns).

4. AN LP-BASED PROCEDURE
4.1. LP Formulations
Our approach to the AGP focuses on good lower bounds. It may also find upper bounds,
i.e., feasible solutions, although this cannot be guaranteed.

The AGP can be trivially formulated as a linear program with infinitely (actually
uncountably) many binary variables and inequalities:

min
∑
g∈P

xg (1)

s.t.
∑

g∈V(w)

xg ≥ 1 ∀w ∈ P (2)

xg ∈ {0, 1} ∀g ∈ P (3)
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Here a guard placement is modelled by setting xg = 1 iff g ∈ P is a guard position.
Inequality (2) ensures that the polygon is fully covered. Note that the known upper
bound of bn3 c guarantees that the formulation is well defined.

Due to its infinite size, the above formulation cannot be solved using linear
programming techniques. Instead, we consider the relaxation AGR(G,W ), in which
we relax the integrality constraint (3), restrict the guard positions to be from a finite
set G ⊂ P , and only require a finite set W ⊂ P of witnesses to be covered. Therefore,
AGR(P, P ) is the standard LP relaxation of AGP, and AGR(G,W ) is a relaxation of
AGR(P, P ). Throughout this paper, we assume that every witness w ∈ W is visible
from at least one guard position g ∈ G. This ensures feasibility of the formulations.

AGR(G,W ) can be formulated as follows:

min
∑
g∈G

xg (4)

s.t.
∑

g∈G∩V(w)

xg ≥ 1 ∀w ∈W (5)

0 ≤ xg ≤ 1 ∀g ∈ G (6)

The associated dual linear program of (4)–(6) reads as follows:

max
∑
w∈W

yw (7)

s.t.
∑

w∈W∩V(g)

yw ≤ 1 ∀g ∈ G (8)

0 ≤ yw ≤ 1 ∀w ∈W (9)

Unsurprisingly, the primal LP is a fractional covering problem using fractional guards,
and the dual is a fractional packing problem.

An optimal solution to AGR(G,W ) has no straightforward interpretation in terms of
the original AGP. It is neither an upper bound (as there may be points in P \W that
are not sufficiently covered), nor a lower bound (as there may be guard positions in
P \ G that allow for covering with fewer guards). We establish a connection between
AGR(G,W ) and AGP by analyzing the separation problems associated with the LP
formulation. Let x∗ be an optimal solution to (4)–(6) with associated dual solution y∗.

The primal separation problem for AGR(P, P ) asks whether x∗ violates a primal
constraint. Given that x∗ is feasible for AGR(G,W ) by definition, and because the
variable bounds are not relaxed in AGR(G,W ), such a constraint can only be of type (5)
for some witness w ∈ P \W . The separation problem therefore asks to identify a point
w ∈ P \W , for which x∗(G ∩ V(w)) < 1 holds. The following cases result:

(a) If such a point w exists, it proves that x∗ is not feasible for AGR(G,W ∪ {w}) (and
therefore also AGR(P, P )).

(b) If no such point exists, it proves that x∗ is feasible and optimal for AGR(G,P ). It is
therefore an upper bound for AGR(P, P ).
Furthermore, if it additionally happens that x∗ is integral, i.e., x∗g ∈ {0, 1} ∀g ∈ G,
it also defines a feasible solution for the original AGP, i.e., an upper bound.

To solve the separation problem, we translate it to geometric terms. Consider the
overlay of the visibility polygons of all points g ∈ Gwith x∗g > 0. This decomposes P into
a planar arrangement. It is easy to see that the coverage function c(p) := x∗(G∩V(p)) is
constant over every face and edge of the arrangement. Therefore, an algorithm merely
has to iterate over the faces, edges, and vertices of this arrangement to find one where
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Algorithm 1: LP-based routine
1 Generate initial G ⊂ P , W ⊂ P .
2 repeat
3 Solve AGR(G,W ), get optimal solution x∗, dual y∗, and objective value v
4
5 Run primal separation
6 if primal separation produces a point w then
7 W ←W ∪ {w}
8 else
9 Output “v is an upper bound to AGR(P, P )”

10 if x∗ is integral then
11 Output “x∗ is feasible for AGP, v is an upper bound for AGP”

12
13 Run dual separation
14 if dual separation produces a point g then
15 G← G ∪ {g}
16 else
17 Output “v is a lower bound to AGR(P, P ) and to AGP”

18 until both primal and dual separation failed, or lower and upper bounds meet

coverage drops below 1. In fact, due to the bound x∗ ≥ 0, it is sufficient to just iterate
over the faces, as the coverage function has its minima just there.

Now let us repeat these arguments for the dual problem. The dual separation
problem is to identify a guard position g ∈ P \ G with y∗(W ∩ V(g)) > 1. Again, two
cases emerge:

(c) If such a point exists, it solves the separation problem for AGR(G ∪ {g},W ) and
proves that x∗ is not optimal for AGR(P,W ).

(d) If no such point exists, x∗ is optimal for AGR(P,W ). As AGR(P,W ) is a relaxation
of AGR(P, P ), the objective value is a lower bound for it and therefore also the
original AGP.

Due to the symmetry of visibility, the dual separation problem can be solved in the
same manner as the primal. We compute the overlay of the visibility polygons of all
points w ∈W with y∗w > 0, and check the arrangement for points g that satisfy y∗(W ∩
V(g)) > 1. This time, it is sufficient to consider only the vertices of the arrangement.

Finally, if neither primal nor dual separation produce additional points, we can
deduce that x∗ is feasible and optimal for AGR(P, P ).

The above observations translate directly into an algorithm, see Algorithm 1. It
is trivial to see that, should the algorithm terminate, it will have found an optimal
solution to AGR(P, P ) and thus a lower bound for AG. Unfortunately, there are
degenerate problem instances for which the algorithm will never terminate—see
Section 7 for an example.

There are three steps in which the algorithm’s behavior can be influenced. First,
what should the initial G and W be? Guessing a hopefully good (or even optimal)
solution to AG and using the guard positions for G can be a great speedup for the
algorithm. Similarly, a clever choice of W can improve algorithm runtime significantly.
Finally, the separation phases leave several options: prioritizing separating guards
produces more lower bounds, while prioritizing witness separation produces more
upper bounds. All of this is of purely heuristic nature, and will be discussed in
Section 5.
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4.2. Correctness of the Algorithm
LEMMA 4.1 (LOWER BOUND). In case Algorithm 1 terminates, the returned

objective value is a lower bound for AGP.

PROOF. When Algorithm 1 terminates, neither a witness point for condition (a)
nor a guard point for condition (c) exists. Therefore, inequalities (5) and (8) hold for
W = P and G = P , i.e., the current solution x∗ is feasible and optimal for AGR(P, P ).
AGR(P, P ) is the relaxation for AGP, the linear program formulated in (1)–(3). If we
denote the optimal objective values for AGR(P, P ) and AGP by opt(AGR(P, P )) and
opt(AGP ), resp., we have: opt(AGR(P, P )) ≤ opt(AGP ). Consequently, the objective
value opt(AGR(P, P )) of x∗ is a lower bound for opt(AGP ).

LEMMA 4.2 (UPPER BOUND). In case the algorithm outputs an upper bound for
AGP in line 11, the returned value is an upper bound for AGP.

PROOF. The algorithms gives an upper bound whenever condition (b) holds. If, in
addition, x∗ is integral, it is feasible for inequality (3). Moreover, condition (b) assures
feasibility for inequality (2). Thus, x∗ is a feasible solution for AGP, and hence it defines
an upper bound for opt(AGP ).

LEMMA 4.3 (OPTIMALITY). In case Algorithm 1 terminates and the current solution
x∗ is integral, the returned objective value is the optimal value for AGP.

PROOF. The current solution x∗ is feasible and optimal for AGR(P, P ). As AGR(P, P )
is the relaxation of AGP, an optimal integer solution for AGR(P, P ) is a feasible solution
for AGP. We have opt(AGR(P, P )) ≤ opt(AGP ), hence, it is also optimal for AGP.

4.3. Geometric Aspects of the Separation Problem.
Solving the primal and the dual separation problem means identifying a witness point
w ∈ W whose constraint is violated, i.e., x(G ∩ V(w)) < 1, or a guard position g ∈ G
whose constraint is violated, i.e., y(W ∩V(g)) > 1. The coverage of a point in P depends
on the visibility polygons of the guards (or witnesses) p with xp > 0 (yp > 0). Let
Gs = {p ∈ P : xp > 0}, gs = |Gs|,Ws = {p ∈ P : yp > 0} and ws = |Ws|.

This means that a crucial subroutine consists in computing visibility regions inside
of the polygon P ; an important complication arises from the fact that P may be a
non-simple polygon with h holes. This problem has received a considerable amount
of attention: Suri and O’Rourke [1986] were the first who gave an algorithm for
computing a visibility polygon inside a polygon P that may have holes. Their algorithm
performs an angular plane sweep and runs in O(n log n) time; at this point, we have
chosen a similar approach for ease of implementation. This theoretical runtime can be
improved to Θ(n+ h log h) by using a method by Heffernan and Mitchell [1995].

For the primal and dual separation we use the same polygon P . Hence, we can
use the query versions with one preprocessing step. For each separation we need to
compute the arrangement of gs (ws for the dual separation) visibility polygons.

At this point we have not made use of preprocessing approaches, as the most
powerful methods require a large amount of memory. For example, using the algorithm
of Zarei and Ghodsi [2005], we need O(gs(1 + h′) log n+

∑
q∈Gs |V(q)|) time to construct

the arrangement for the primal separation, with O(n3 log n) preprocessing and O(n3)
space. Other options include the method of Pocchiola and Vegter [1993], which uses
the visibility complex to determine the visibility polygon V(q) for a query point
q in O(|V(q)| log n) with O(n log n) preprocessing time using O(n) space. Zarei and
Ghodsi [2005] presented an algorithm that determines V(q) in time O((1 + h′) log n +
|V(q)|) (where h′ ≤ min(h, |V(q)|)) with O(n3 log n) preprocessing time to construct a
data structure of size O(n3). Another solution to the query version is given by Inkulu
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and Kapoor [2009], who use a decomposition of the polygon into (simple) corridors
and junctions and—depending on whether they use an approach from Aronov et
al. [2002] or from Hershberger and Suri [1995] as a subprocedure for computing the
visibility polygon in a simple polygon—achieve O((1 + min(h, |V(q)|)) log2 n+h+ |V(q)|)
or O(|V(q)| log n+ h) query time using O(n2 log n) or O(T + |E|+ n log n) preprocessing
time and O(n2) or O(min(|E|, hn) + n) space, resp. (Here |E| is the number of edges in
the visibility graph, and O(T ) is the time to triangulate the given polygon).

5. IMPLEMENTATION
In this section, we describe implementation aspects of our algorithm. The software will
be made available under the GNU General Public License.

Our software implements the LP-based procedure from Section 4. It uses standard
linear-programming libraries to solve the LPs. Currently SoPlex [Wunderling 1996]
and ILOG CPLEX can be used for that matter, but generally any solver that
provides an implementation of the primal-dual simplex algorithm could be included.
Furthermore, we employ the Computational Geometry Algorithms Library [CGAL]
for visibility queries and the separation problems. We make heavy use of the
Arrangement 2 package [Wein et al. 2008] for both.

The arrangements use exact rational arithmetic to avoid numerical issues. To keep
the computational overhead low, a point-rounding heuristic is used. Every separated
point, i.e., every point that is identified by the primal or dual separation, will be
perturbed to coordinates with smaller representation.

The implementation does not maintain the full overlay of all visibility polygons for G
resp. W , as these tend to become complex very quickly. We have observed that solution
times improve when a different approach is used. For every point in G (resp. W ), we
compute the visibility polygon and store it in a double-connected edge list (DCEL,
see de Berg et al. [2008]). In the separation routines, we then compute the overlay only
for those points that have a positive value in the current solution. As the cardinality of
this point set is usually much smaller than the whole variable set, the overlay is much
simpler.

5.1. Heuristic Ingredients
The algorithmic framework neither specifies how G and W should be initialized, nor
how the separation problem is to be solved. This is generally irrelevant for the theory
of the algorithm, but not for the practice. We have implemented a number of different
procedures for these problems.

Steering towards Bounds. Attempting to solve both the primal and the dual
separation problem in each iteration is not neccessary. By adjusting which separator
is used in an iteration, one can steer the algorithms towards lower or upper bounds.
This steering is purely heuristic, and none of the strategies can provide guarantees.
Our implementation offers four steering strategies:

— The “Both” strategy always runs both primal and dual separators in each iteration.
The idea is to reach an optimal solution quickly, without caring to find bounds before
the final step.

— “Primal” focusses on finding upper bounds, i.e., solutions. It always runs the
primal separation routine. Dual separation only happens if the primal fails. This is
motivated by the idea to find solutions often, and gradually turn them into optimal
ones.

— “Dual” is the counterpart of Primal. It favors dual separation over primal, in the
hope of finding lower bounds quickly.
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Fig. 2: “Creeping shadow” effect caused by placing witnesses in faces.

— “Stay” alternates between the two previous ones. It will start by only running primal
separators, until this fails for the first time. A fractional solution is thus found.
Then it heads for a lower bound by using dual separators only, until they fail. This
is repeated, resulting in an alternating sequence of upper and lower bounds. This
separator exists in two flavors: “StayP”, which starts with primal separation, and
“StayD”, starting with dual separation.

Point Separators. To solve the separation problems, we have implemented three
different heuristics for each problem. Note that for the primal separation problem it
is sufficient to consider only points in faces of the guard arrangement. This is because
x(G∩ V(w)) is constant for points w on such a face, and of same or higher value on the
face’s boundary. A similar argument holds for the dual separation problem. There it
suffices to consider only vertices of the witness arrangement.

We provide the following separators. Two of them separate several points on each
call, to avoid having to re-optimize the LP for every single new column or row.

— “Bulk” simply searches through the faces (vertices) of the guard (witness)
arrangement to find points defining violated constraints. It returns an arbitrary
selection of these points, with a user-provided limit on the number of points.

— “Maximally Violated” follows the principle of always separating using the maximally
violated constraint, i.e., arg minw∈P x(G ∩ V(w)) for the primal problem and
arg maxg∈P y(W ∩ V(g)) for the dual.

— “Greedy” attempts to find just a few points, which ideally become independent
rows (columns) with large support in the LP. We model dual separation as a set-
cover problem, where a minimal number violated guard points are used to cover
the witnesses. The standard greedy algorithm is used to solve it. For the primal
separation, we use an analogous procedure.

— “Edge Bulk” is available for primal separation only. It is based on “Bulk”
and “Maximally Violated” above, but directly addresses the “creeping shadow”
phenomenon. Consider Figure 2 for a visualization. If there are two guards g`,1 and
gr,1 placed next to an obstacle, they cast an unguarded shadow behind it. Face-based
primal separation solves this problem by placing a witness w1 in the shadow. Dual
separation can guard this witness by shifting the guards a little bit, leading to g`,2
and gr,2 that cover w1, but still cast a shadow behind the obstacle, leading to another
witness w2. This can be iterated, resulting in a shrinking but never disappearing
shadow. Simply placing a witness on the obstacle edge in the shadow stops this
behaviour. For this end, we implemented a heuristic that favors uncovered polygon
edges over faces, and returns points based on a priority function.
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Vertex Guards. The implementation offers solving the problem variant in which
only vertex guards are allowed. This allows for direct comparison with the algorithm
by Couto et al. [2009]. It is implemented as a steering strategy, “Primal Only”. This
strategy runs only the primal separator, thereby limiting the algorithm to the guard
positions that are initially available. It is combined with initially placing a guard on
every polygon vertex.

Initial Placements. There are several ways to initialize G and W . We have
implemented and evaluated five heuristics:

— In the “All” heuristics, we put both a guard (resp. a witness) on each polygon vertex.
This means that the initial guard set allows for a feasible solution, although it is not
neccessarily optimal.

— The “Other” heuristic places a guard (witness) on every other vertex, in the hope of
speeding up the algorithm by having a smaller start set than with “All”.

— Another useful strategy would be to start with no guards and witnesses at
all, shifting the work completely to the separators. For technical reasons, our
implementation does not allow for such a state. Instead we pick a single arbitrary
vertex and put a guard (witness) on it. This method is called “One”.

— Another solution to have a guard set that suffices for a feasible solution is by placing
guards on all reflex vertices of the polygon. This strategy is called “Reflex Vertices”.
It is not useful for witnesses, as these vertices tend to have large visibility ranges,
i.e., they are easy to cover.

— Finally, “Reflex Edges” is available for witnesses only. It places a witness on every
polygon edge that is incident to a reflex vertex. The motivation behind this is to
“hide” a witness behind every reflex vertex. This prevents creeping shadows.

6. COMPUTATIONAL RESULTS
We tested our implementation on a variety of different classes of polygons, including
random polygons already tested by Couto et al. [2009]. In this section, we analyze
how our algorithms perform on all these instances. For all figures in the following we
show solutions to the primal problem (guards) and to the dual problem (witnesses).
The coloring of the polygons makes it easier to visually test for feasibility. For the
primal problem, gray denotes covering with a value of exactly 1, solutions with bluish
coloring are feasible (they indicate a value > 1), solutions with a yellow-green coloring
(indicating a value< 1) are not. For the dual problem, gray again denotes covering with
a value of exactly 1, solutions with a yellow-green coloring are feasible (they indicate
a value < 1), solutions with bluish coloring (indicating a value > 1) are not.

6.1. Examples.
The first example (Figure 3) shows that switching from vertex guards to general
guards may considerably improve the optimal value, at the expense of higher
computational difficulty. Figure 3 depicts a random spike polygon (see Section 6.2):
long polygonal corridors crossing some “center” polygons. While using vertex guards, a
single guard may only cover spikes whose boundary crosses precisely at the boundary
of the centers, i.e., in most cases one or two points guards can be located on arbitrary
positions in intersecting regions, and are such more likely to cover more spikes. In
particular, point guards that cover spikes may also be used to guard areas around
possible holes in the centers. In the example presented in Figure 3, we can observe
a lower bound of 23 on the number of vertex guards necessary to guard the polygon
(Figure 3, top), while 10 point guards suffice.

The second example (Figure 4) shows the floor plan of our institute, a non-orthogonal
polygon with a single hole and a number of columns. We start with a greedily obtained
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#8 - 

#8

#28 - 

#28

#28 - 

#28

Fig. 3: (Top) A lower bound of 23 on the number of vertex guards; (Bottom left) a feasible
solution with 10 general guards (big blue points); (Bottom right) a matching set of witnesses
showing optimality of the general solution. Witness points are shown in green, guard points in
blue. In case of a guard g ∈ G with xg ≥ 0 (an active guard position), or a witness w ∈ W with
yw ≥ 0, the circle denoting the guard or witness is drawn larger than the circles for inactive
points. The amount of filling of these circles indicates the value of the corresponding variable (a
fully filled circle indicating a value of 1.)

set of witnesses (left), corresponding to an (infeasbile) dual solution; a corresponding
set of guards is shown on the right. In iteration #3, the dual problem is feasible, but the
primal problem still has a tiny region near the central column that is not sufficiently
covered. Finally, in iteration #5, the primal and the dual problem are feasible, so we
are in case 3 of Section 4 and have achieved an optimal feasible solution with 10 general
guards.

6.2. Evaluation.
For a thorough evaluation of our implementation, we used four different sets of
instances:
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# 1 - 

#1

# 3 - 

#3

# 5 - 

#5
# 1 - 

#1

# 3 - 

#3

# 5 - 

#5

Fig. 4: Floor plan of our institute; the top row shows witness sets, while the bottom row shows
guard sets for iterations #1, #3, #5. Fractional weights are indicated by partially filled red dots.
An optimal solution and a matching lower bound are found in the fifth iteration.

Fig. 5: Different levels of the boundary of modified von Koch polygons: level 1 (left) and level 2
(right).

— Random orthogonal simple polygons from the art gallery instances page [Couto et al.
2009]. See Figure 6, left, for one of them.

— Random orthogonal “von Koch” polygons, from the art gallery instances page [Couto
et al. 2009]. A “von Koch” polygon is a polygon with a boundary constructed by
modified versions of the fractal von Koch curve starting from a square. At each
level, a side is partitioned in three intervals of equal length `, the center interval
is then replaced by three sides. Those build a rectangle with the removed center
interval: the opposite side is of equal length `, the other to sides have length 3/4`.
See Figure 5 for an example of the changes applied to the boundary. Then a random
(orthogonal) “von Koch” polygon is constructed starting from a square, randomly
choosing a side of the current polygon which is replaced by the modified von Koch
curve (in case level 4 is reached a side will not be chosen anymore). See Figure 6,
center, for one of them.

— Random non-orthogonal simple polygons, again from the art gallery instances page.
See Figure 6, right, for one of them.

— Random spike polygons with holes. For those, we created star-shaped polygons
consisting of a central octagon, to which we added random spikes that can be
guarded from the octagonal center. Each problem instance is the overlay of several
such star-shaped pieces. See Figure 3 for one of them. These are constructed to
evaluate the difference between vertex and point guards. Placing a point guard
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#0 - #0 - 

#0 - 

Fig. 6: Left: A random non-orthogonal simple polygon with 200 vertices. Center: A random
orthogonal “von Koch” polygon with 500 vertices. Right: A random non-orthogonal simple
polygon with 200 vertices.

in each octagon center produces an almost-optimal solution, whereas there are
more guards needed when they are restricted to the vertices. Furthermore, these
instances have holes in order to evaluate the influence of them on the algorithmic
performance.

Each of these four sets consists of 150 instances, with about 60, 100, 200, or 500
vertices.

Each instance was run with different configurations. The tests were conducted on
Linux PCs with 3.0 GHz CPUs and 2 GB of RAM. We used CGAL 3.4, CPLEX 12.1,
and SoPlex 1.4.1. In a prestudy, we found that the algorithm would usually terminate
within a few seconds to a minute, or run for a very long time (hours to days). Therefore,
we chose to abort each experiment after some defined time bound in the final study.
This bound was set to 20 minutes of CPU time, which is sufficiently long not to
abort runs that finish quickly, and at the same time allowed us to run a total of
28,000 experiments within a reasonable time. Therefore, some runs did not finish
with an optimal fractional solution. In the remainder of this section, we report on the
percentages of runs that lead to optimal fractional solutions and to optimal integral
solutions. Furthermore, we list how long it took to finish on average, not counting the
runs that were aborted. Note that the algorithm can be interrupted earlier if optimal
solutions are not neccessary, as we produce lower and upper bounds throughout the
runtime.

Most comparisons are based on a “default configuration”, which we believe to be
the best combination of parameters. It initially places guards on all reflex vertices,
and witnesses on all reflex edges (see Section 5.1). The separation strategy is “StayP”,
using the “Edge Bulk” primal separator and “Greedy” dual separator. The default LP
solver is CPLEX.

Several of the results in this section report on the impact of certain parameter
choices on the total runtime. We use only pairwise comparison, where we change
a single parameter and record the change in runtime. To account for the large
diversity in runtimes, we average over the quotient of these runtime pairs. Due to
the multiplicative nature of such quotients, we report the log-average (geometric
mean): when we compare configurations p and q over n runs, leading to runtimes
(pi)i=1,...,n and (qi)i=1,...,n, the average is exp((1/n)

∑n
i=1 log(pi/qi)). Therefore, a value

of 1 indicates that both configurations perform the same, a value below 1 shows that
p is faster, and a value over 1 shows that q is faster. To see why we favor the log-
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Runtime Purpose
State updates 80.02% Compute visibility polygons, update LP
Separation 19.50% Find new guards and witnesses
LP solving 0.29% Solve current LP, provide fractional solution
Rest 0.19%

Table I: Average allocation of CPU time to the three major sub-procedures.

average over the standard average, consider the following example: Suppose we have
two runs, where q takes twice as long as p on the first (i.e., p1/q1 = 1

2 ), and the
situation is reversed on the second (i.e., p2/q2 = 2), the average runtime factor would
be ( 1

2 + 2)/2 = 5
4 , indicating that p is slower than q. Even worse, the result depends on

the order of p and q—if we exchange p and q, the average is still 5
4 , now indicating that

p is faster than q. The log-average will be 1 in either order, correctly indicating that on
average, both configurations have the same speed.

Timing. Table I lists how much time on average was spent in the three major
procedures of the algorithm. It is obvious that data structure updates and geometric
support procedures are—by far—computationally most expensive, whereas solving the
LPs has virtually no runtime impact. This indicates that from a software engineering
standpoint, improving the geometry routines should yield the biggest overall speedup.
However, as is made clear in further analyses below, this is not the most important
issue.

Optimality Rates. Table II lists the percentage of runs in which the default
configuration could identify an optimal fractional solution (IIa), resp., optimal integral
solution (IIb) within the 20-minute time frame. Clearly, these rates are very high. This
is especially surprising for integral solutions, as this problem is not directly addressed
by the algorithm. Table III reports the average time for completion of the algorithm,
counting only those that finished in time. Note the 29.4 seconds average time for
polygons with 100 vertices results from one instance with a runtime of 577 seconds.
Most of the other instances are solved in 1-2 seconds, see Figure 7, left. The polygons
with 200 vertices mostly have a runtime between 4 and 8 seconds (and a “smaller”
outlier instance with 147 seconds), see Figure 7, right, resulting in an average time of
14.9 seconds.

The runtimes stay well beyond the maximum of 1200 seconds, indicating the
algorithm will either terminate quickly, or run into problems it cannot solve at all.
Such problems usually occur when a huge number of iterations is needed to have
guards or witnesses slowly converge to specific points. Section 7 discusses an example
for this. Based on these tables and manual inspection of the according algorithm runs,
we conclude that there is a great need for additional separators that are able to detect
such situations, and to take appropriate action by placing guards (or witnesses) at
specific points. As we are currently not aware of how to define such a separator, this is
left for future work.

Steering Strategies. We evaluated the influence of different steering strategies on
the algorithm runtime, see Table IV. We conclude that “Dual” and “StayD” usually
outperform the other strategies. Both start by producing additional guards, indicating
that our primal initial placement strategies could be improved. Also, the poor
performance of “Primal” and “StayP” indicate that the strategy for placing initial
witnesses is very good. Furthermore, we did observe that Dual and Primal produce
more bounds of their respective kind. “StayP” and “StayD” provide alternating bounds
of both kinds, as expected.
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n 60 100 200 500
Orth. 90 % 71 % 44 % 15 %
Simple 83 % 82 % 74 % 48 %
Koch 87 % 89 % 93 % 81 %
Spikes 100 % 100 % 100 % 100 %
Total 90 % 86 % 78 % 61 %

(a) Fractional Optimality

n 60 100 200 500
Orth. 80 % 54 % 19 % 7 %
Simple 80 % 64 % 44 % 4 %
Koch 77 % 71 % 70 % 15 %
Spikes 67 % 68 % 61 % 52 %
Total 76 % 64 % 49 % 19 %

(b) Integer Optimality

Table II: Optimality rates for default configuration

n 60 100 200 500
Orth. .4s 1.1s 4.3s 25.3s
Simple .7s 29.4s 14.9s 223.3s
Koch 2.4s 5.5s 18.9s 205.0s
Spikes 1.7s 3.9s 15.3s 190.2s
Avg. 1.3s 9.4s 14.8s 189.3s

Table III: Average algorithm runtimes in the default configuration.

111 5 10 577
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Fig. 7: Histogram of algorithm runtimes in the default configuration for random simple
polygons with 100 (left) and 200 (right) vertices.

Point Separators. Comparisons for choosing primal and dual separators different
from the default can be found in Tables V and VI. It is obvious that the primal
separator “Edge Bulk” outperforms the others, which confirms the motivation of
avoiding the creeping shadow effect (see Section 5.1). For dual separators, the “Greedy”
strategy is the clear winner, although the numbers suggest that it could be worth
evaluating additional separators in future work.

Initial Placement. Next we evaluated the influence of the initial choice of guard and
witness points. This is reported in Table VII. We did not run every possible combination
of guard / witness initialization strategies, as that would require 25 times as many
runs. Instead we selected five seemingly useful combinations and evaluated those.

It is obvious that a good choice of initial points can have a substantial improvement
in runtime, given that the best and worst strategies are on average by a factor 2 apart.
The combination of reflex vertices and reflex edges is best, substantially outperforming
the other combinations. This confirms the intuition behind these strategies—placing
guards where they can see as much as possible, and hiding witnesses at the
boundaries. An interesting conclusion can be drawn from these results together with
the analysis of separation strategies above. Strategies that initially produce guards
turned out to be beneficial. This indicates that the witnesses are well chosen, whereas
a set of guards in the polygon’s interior is needed to speed up the algorithm. Identifying
a useful strategy following this scheme is left for future work.
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Primal StayP Both Dual StayD
Primal 1.00 1.24 1.31 1.35 1.33
StayP 0.81 1.00 1.01 1.08 1.12
Both 0.77 0.99 1.00 1.05 1.09
Dual 0.74 0.93 0.95 1.00 1.02
StayD 0.75 0.89 0.92 0.98 1.00

Table IV: Influence of steering strategy on total runtime. (log-average of relative time)

Max. V. Greedy F. Bulk E. Bulk
Max. V. 1.00 1.16 1.27 1.62
Greedy 0.86 1.00 1.09 1.41
F. Bulk 0.78 0.92 1.00 1.30
E. Bulk 0.62 0.71 0.77 1.00

Table V: Influence of primal separator on total runtime. (log-average of relative time)

Max. V. V. Bulk Greedy
Max. V. 1.00 1.17 1.41
V. Bulk 0.86 1.00 1.17
Greedy 0.71 0.86 1.00

Table VI: Influence of dual separator on total runtime. (log-average of relative time)

Influence of LP solver. As described above, solving LPs consumes almost no CPU
time during the course of the algorithm, so switching to a different solver should not
have a direct influence on the outcome. However, we found that using SoPlex instead of
CPLEX resulted in 17% longer solution times on average. This must be due to indirect
effects. Further evaluations revealed that CPLEX tends to produce fractional solutions
with a smaller support (i.e., number of non-zero variables), which decreases the time
spent to compute the associated primal and dual arrangements. We believe this is due
to superior preprocessing in CPLEX, which leads to combinatorial fixation of some
variables.

Neither of the two LP solvers produces integer solutions more frequently than the
other. Table VIII lists how often SoPlex-based configuration could identify optimal
integer solutions; compare with Table IIb for CPLEX. The lower percentage of 57%
of Random orthogonal “von Koch” polygons with 100 vertices in comparison to 67%
of Random orthogonal “von Koch” polygons with 200 vertices is caused by stochastic
effects.

Vertex Guards. Using the Primal Only steering strategy lets the algorithm solve
the vertex guard variant of the problem, in order to allow for a comparison with
the algorithm by Couto et al. [2009]. Note that there are two important differences:
our algorithm can deal with polygons with holes; on the other hand, theirs always
produces integral solutions. As it was not possible to repeat the reported experiments
on identical platforms, a direct comparison of runtimes is impossible.

Table IX shows how often the algorithm finished with a fractional or integer optimal
solution. It is striking how the restriction to vertex guards lets convergence problems
disappear—all runs finished within time (compare to Table IIa for the general case).
The solution times are reported in Table X. Obviously the vertex-guard problem can
be solved faster by our algorithm, and there are no convergence issues. However, it
should also be noticed that optimal integer solutions are found less frequently. Given
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One/One Oth/Oth All/All All/RfE RfV/RfE
One / One 1.00 1.59 1.64 1.74 2.02
Other / Other 0.63 1.00 1.04 1.13 1.30
All / All 0.61 0.96 1.00 1.10 1.27
All / Reflex E. 0.57 0.88 0.91 1.00 1.21
Reflex V. / Reflex E. 0.50 0.77 0.79 0.82 1.00

Table VII: Impact of initial G and W on total runtime. (log-average of relative time)

n 60 100 200 500
Orth. 86 % 61 % 15 % 7 %
Simple 79 % 64 % 33 % 0 %
Koch 71 % 57 % 67 % 15 %
Spikes 64 % 46 % 46 % 52 %
Total 75 % 57 % 40 % 19 %

Table VIII: Integer solutions obtained using SoPlex.

n 60 100 200 500
Orth. 100 % 100 % 100 % 100 %
Simple 100 % 100 % 100 % 100 %
Koch 100 % 100 % 100 % 100 %
Spikes 100 % 100 % 100 % 100 %
Total 100 % 100 % 100 % 100 %

(a) Fractional Optimality

n 60 100 200 500
Orth. 79 % 71 % 22 % 11 %
Simple 64 % 64 % 22 % 7 %
Koch 32 % 36 % 19 % 4 %
Spikes 0 % 25 % 4 % 0 %
Total 44 % 49 % 17 % 6 %

(b) Integer Optimality

Table IX: Optimality rates for vertex guards.

that there is no direct mechanism for integer solutions in our algorithm, addressing
this issue is left for future work.

Two conclusions can be drawn. Firstly, our algorithm has a speed well comparable
to that by Couto et al. [2009]. Secondly, as success rates increase and runtimes drop
in this variant, we can see that the apparant loss of performance in the general case
stems from the increased complexity of the problem, and not from implementation or
fundamental algorithmic issues.

7. PROBLEMS OF CONVERGENCE
For some polygons, some guards in an optimal solution for the AGP must be located at
certain points or on a line segment, see the example in Figure 8. This means that the
measure of the solution in an appropriate high-dimensional space is zero; as there is
no known simple description of these sets (in particular, they are not intersections of
diagonals or edge extensions), it is not surprising that dealing with these situations is
problematic.

Our method is based on introducing guards (or witnesses) in insufficiently covered
areas. We introduce a witness w ∈ W in case its constraint is violated, i.e., x(G ∩
V(w)) < 1. Hence, looking at the overlay of the visibility regions of the guards, this
coverage value is smaller on faces of the arrangement than on its edges or vertices.
Consequently, we will mostly find witnesses with violated constraints in those faces.
Accordingly, as we look for a guard g ∈ G with y(W ∩ V(g)) > 1, guards will be
introduced most likely (the inequality may be violated on vertices and not on faces,
but not vice versa) on vertices of the visibility region overlay defined by the witnesses.
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n 60 100 200 500
Orth. .4s 1.0s 3.8s 23.2s
Simple .7s 1.5s 5.4s 32.4s
Koch .6s 1.6s 6.4s 43.1s
Spikes 1.5s 2.9s 11.8s 136.4s
Avg. .8s 1.8s 6.9s 58.8s
P.Guards 1.3s 9.4s 14.8s 189.3s

Table X: Total runtimes solving the vertex-guard variant. (Last row taken from Table III for
comparison with the general problem.)

Fig. 8: For this polygon guards cannot be moved in any direction. The dash-dotted lines indicate
lines of sight of the guards.

We are able to identify a region around the guard’s only possible position and shrink
its size during the course of the algorithm. In order to obtain the optimal solution, the
newly chosen guard needs to be located exactly at a certain position, which need not
be describable by some simple characteristics of the polygon, such as edge extensions
or diagonals, but may be located, like the center guard of the example of Figure 8,
on the intersection of visibility lines. The region will shrink to a point after infinitely
many iterations, but not within finite time. In order to obtain a finite time we would
have to be able to find the unknown point after a limited number of iterations. As our
point separating strategies can only depend on the current overlay and the polygon,
but not on an intersection defined by the final set of guards, we will often fail to “guess”
exactly this point. First, in the primal separation we need to identify witnesses in faces
that then define an arrangement for the dual separation with a vertex exactly at the
desired position. For the witnesses in faces we have an infinite number of positions to
choose from.

Using a different strategy for the initial guard placement, we may obtain
convergence towards optimal fractional solutions, but this is not guaranteed.
Obviously, this issue should become less problematic if the found solutions are also
required to be robust, implying that small perturbations leave their feasibility intact,
eliminating degenerate solutions. This requirement is quite natural in practice, not
just for being able to implement optimal positions, but also because scan registration
usually requires some overlap between visibility regions.

For the polygon in Figure 8 and only one initial guard, we have to deal with these
problems of convergence; see Figure 9. In the solution to the primal problem after 407
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Fig. 9: Worst-case problem instance with zero-dimensional optimal solution space. (Top) The
primal solution after over 400 iterations. (Gray denotes covering with a value of exactly 1,
solutions with bluish coloring are feasible (value > 1), solutions with yellow-green coloring
(< 1) are not.) (Bottom) The corresponding dual solution. (Gray denotes covering with a value
of exactly 1, solution with yellow-green coloring are feasible (value < 1), solutions with bluish
coloring (> 1) are not.)

iterations (see Figure 9, top), we can identify many guard positions inserted “around”
the only feasible locations of the optimal solution, but still the primal and the dual
problem are not feasible. On the other hand, for the same polygon we can find the
optimal solution value, based on an optimal fractional solution, if we start with guards
placed at every vertex.
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(a) (b)

Fig. 10: Examples for cutting planes. Left: An example with a fractional optimal value of 3
2
, with

three guards of value 1
2

each. Using the witnesses w1, . . . , w3, we can introduce a new cutting
plane. Right: An example with a fractional optimal value of 5

2
, using five guards of value 1

2
each.

The witnesses w1, . . . , w5 allow us to bound the number of guards with 3 from below. The shaded
areas indicate “forbidden” areas for the polygon’s interior, as points located in these regions can
guard more than two of the witnesses considered in this example.

8. GENERATING INTEGER SOLUTIONS
The AGP asks for integer solutions. Hence, improving their generation is of interest.
Here we briefly discuss some basic ideas. The development of strategies to obtain
integer solutions is in the focus of our current and future work.

An improvement should come from combining geometry with polyhedral
combinatorics, refining the polyhedral description in order to remove large classes of
non-integral vertices.

The idea is to add inequalities that are intrinsic to our geometrical problem, but not
given for the general covering problem. The cuts we consider are geometric cuts, based
on sets of witness points.

As shown in Figure 10, we have identified various classes of cutting planes that
may turn out to be useful for quicker resolution of fractional vertices, at the expense
of solving the corresponding separation problems (which are different from what we
described in Section 4.) Those cutting planes are based on a common idea: if we can
identify 3 (resp. k + 1) witnesses, such that there exists no point in the polygon that
can guard more than two of these, we need at least 2 (resp. k+1

2 ) guards for complete
coverage. In the example of Figure 10, left, we have exactly three witnesses (w1, . . . , w3)
fulfilling this condition, while the fractional optimal solution places three guards, each
with a value of 1

2 , resulting in a objective value of 3
2 . The cutting plane we introduce is:∑

g∈∪3
i=1V(wi)

xg ≥ 2 (10)

In general we identify cutting planes of this type:

∃w1, . . . , wk+1 : ∀i 6= j 6= ` ∈ {1, . . . , k + 1} : V(wi) ∩ V(wj) ∩ V(w`) = ∅
⇒

∑
g∈∪k+1

i=1 V(wi)
xg ≥ k+1

2 (11)
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Those cutting planes are not yet integrated into the implementation. Solving
the resulting separation problems, identifying further cutting planes and the
implementation are left for future work.

9. CONCLUSION AND OUTLOOK
We have presented an LP-based procedure for obtaining bounds for the Art Gallery
Problem that—in case of convergence and integrality—provides optimal solutions.
Our algorithm is based on a formulation as a fractional covering problem and the
corresponding dual fractional packing problem. For the separation problem, we use
properties of visibility polygons, i.e., information that is intrinsic to the AGP but not
to the underlying covering formulation.

There is a variety of directions for extending our work. As discussed above,
improving the separation routine may lead to considerable speedup; however, this may
come at the expense of tremendous memory requirements, so careful balancing will be
necessary. As presented in Section 6, the updates of the overlay cause around 80% of
the runtime; more sophisticated primal and dual point separators should increase the
success rate. Consequently, a main focus of our future work will be on the development
of separators.

Other extensions arise from fine-tuning the choice of guards and witnesses, making
more extensive use of the intrinsic geometric structure of the underlying set cover
instances.

Finally, discussions with our inmetris3D partners have revealed a variety of
practical conditions and relaxations on guards and environment. In particular, there is
a strong interest in fractional solutions instead of integral ones, making our LP-based
approach even more powerful. We are optimistic that we can report on these and other
improvements in the foreseeable future.
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