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Abstract
Train dispatchers monitor and control train traffic from a dispatching center, which is re-
sponsible for a certain region in the railway network. This region is divided into subareas,
where each train dispatcher controls one or several subareas at any time. Given the high
safety concerns of their profession, dispatchers’ working shifts should fulfill several legal
and operational constraints, such as bounds on the length of shifts and on the resting pe-
riods between shifts. To construct shift schedules for train dispatchers is a complex and
time-consuming process that is currently done manually. In this paper, we present an opti-
mization framework to automate this process, based on a model for single-day shifts. Here,
we focus on the objective of minimizing the number of dispatchers as a baseline for future
objectives.
We present experimental results for real-world sized data (number of geographical areas
and train movements in the order of magnitude as for one dispatching center in Sweden,
covering the southern part of the country). We study the impact on the run time for different
input parameters, namely: the total number of geographical areas, the maximum number of
geographical areas that can be assigned to a dispatcher in any period, changes in adjacency
between the geographical areas, and the number of geographical areas that each dispatcher
is qualified to monitor. The run time for the instances is between 19 and 305 seconds.
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1 Introduction

Thanks to their high speed, large loading capacity, high degree of safety and reduced en-
vironmental impact, trains are considered as one of the best choices among the available
transportation modes for both passengers and freights. Due to these and other advantages,
rail transportation is becoming more and more popular among users, which is confirmed by
the increase in the passenger numbers during the last two decades. In Sweden, the num-
ber of train passengers increased by 75% between the years 2004 and 2019 (EUROSTAT
(2022a)), while the train movements, given in train kilometers, increased by 32% during the
same period (EUROSTAT (2022b)).
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This increase in train traffic brings with it many challenges of how to manage the in-
frastructure to accomplish the operations safely and efficiently. The safety here refers to
avoiding hazardous situations that involve trains and/or maintenance crew out in the field,
while the efficiency refers to minimizing the operational costs. Train delays and cancella-
tions cause significantly high costs for train operating companies as well as for the whole
society. The major work—besides guaranteeing safety—to reduce these costs during op-
erations is done in the dispatching center. The dynamicity and complexity of train traffic
require quick and continuous decision making, which leads to an increase of the train dis-
patchers’ mental cost, which is commonly called workload (WL). Generally, the WL is
correlated with the number and complexity of the executed tasks. Given the finite number
of available resources, such as the number of dispatchers and/or working positions, it is
important to limit the number of tasks for each dispatcher such that none of them should
experience an overwhelming WL. This limitation should already be considered during the
shift planning phase, which is also called shift scheduling. Generally, shift scheduling is a
tactical planning step that consists in defining when each shift will start and end, and later
to assign personnel to their work stations.

The Swedish railway network is controlled by eight different dispatching centers. A
major one is in Malmö and it controls the traffic in the southern region of the country. The
shift scheduling practices at Malmö are considered representative for most of the Swedish
dispatching centers. This main region is divided into smaller geographical areas that should
be controlled by one dispatcher. An area could be one or several train stations, one or several
track sections or a combination of them. To continuously guarantee traffic safety, each area
must always be controlled by some dispatcher.

In the current practice, train dispatchers’ schedules are made by hand, which is a difficult
and time-consuming task with a considerable space for improvement—e.g., by automating
the planning process and by improving the quality of the schedules. The complexity of the
scheduling process stems from the number and type of restrictions that a feasible schedule
must fulfill. These constraints are both legal ones, such as the allowed shift length or the
maximum number of consecutive night shifts, as well as operational constraints, such as the
number of areas a dispatchers can handle during each period or how these areas could be
combined. To our knowledge, no previous research has tackled the issue of train dispatchers
shift scheduling, and therefore we see this as an unexplored area with important possible
improvements.

The main goal of this paper is to present an optimization framework that can be used for
improving or automating the shift scheduling. The generated shift schedules should fulfill
all the legal and operational constraints that are adopted in Malmö dispatching center. In
addition, no dispatcher should be assigned a too high WL. Since the WL is a subjective
metric that is difficult to estimate, we, in this paper, choose to use task load as a simplifica-
tion of it. Moreover, we approximate task load by the number of train movements in each
geographical area during each time period. In our optimization problem, we aim to obtain
a shift schedule with the minimum labor cost, which means with the minimum number of
used dispatchers.

As a contribution of this paper, we formulate an optimization framework to automatize
the process of train dispatchers’ shift scheduling. The framework considers limitations re-
garding shift lengths, task load, dispatcher competences and feasible area assignments. In
this work we present a novel approach for modelling the combination of the areas to assign
to each dispatcher. Moreover, we run an experimental study where we change different



parameters, such as the maximum number of areas that can be combined and the ratio of
areas for which dispatchers hold an endorsement. However, we do not consider ad hoc
re-scheduling in case of extreme events such as major weather disturbances.

The paper is organized as follows: in Section 2, we present related work on the dis-
patching work environment and on shift scheduling in general. In Section 3, we present the
problem statement. In Section 4, we describe our IP model. We present the experiments
and discuss their results in Section 5. Finally, we conclude and give suggestions for future
work in Section 6.

2 Related Work

In this section, we describe research literature related to the train dispatchers’ working en-
vironment, and to shift scheduling.

2.1 The Working Environment at Train Dispatching Centers

Railway operations are executed according to tactically predefined plans, which consist in
timetables for train movements and maintenance activities. In an ideal world, all the op-
erations would be executed according to the original plans. But in reality, the operations
are occasionally disturbed, generating delays, which makes replanning necessary (Marinov
et al. (2013)). The causes of delays are many, examples of these are different technical
failures in the rolling stocks or the infrastructure, such as stop signals and switches. Se-
vere weather conditions, such as too low temperatures and heavy snow, are also a reason
for delays (Mücke (2002)). The recovery from the disturbances is within the dispatchers’
responsibility, who should guarantee safe and efficient train movements. To do that, train
dispatchers constantly monitor train movements so that they can forecast possible conflicts
and then eventually reschedule some trains (Marinov et al. (2013)). Possible reschedul-
ing interventions could be delaying, rerouting or even cancelling some trains (Cacchiani
and Toth (2018)). Generally, train dispatchers follow some prioritization rules, i.e., which
trains should run first and which could be delayed or cancelled, for making the rescheduling
decision. As an effectiveness measure of the taken decision, dispatchers may aim for mini-
mizing the total (weighted) delay or for reducing the deviation from the original timetable
as much as possible (Marinov et al. (2013)). Apart from monitoring and controlling the
train movements and maintenance works, the dispatchers have a large number of other re-
sponsibilities and administrative tasks. Reinach (2006) identified 67 tasks that are executed
by train dispatchers, and they grouped them into six categories:

• Actuate signals, switches, blocking devices and bridge controls

• Issue/void dispatcher-authorized mandatory directives

• Grant other track-related permissions, protections and clearances

• Carry out non-authority or non-permission/protection/clearance communications

• Perform general record-keeping tasks

• Review reference materials



Huang et al. (2018) made observations inside a dispatching center and listed a set of
tools that dispatchers are provided with. The tool set consists of paper and pencil, commu-
nication consoles (radiocommunication system, cellphone and land phone), PC monitors,
digital forms (for standard information exchange between dispatchers and other entities)
and a Computer Aided Dispatch system, which provides a visual presentation of the trains
in the network. With the introduction of Centralized Traffic Control, where train dispatchers
have a direct control over the signals and switches in the network, the number of commu-
nication calls and warrants decreased but at the same time the dispatchers’ responsibility
became heavier (Dima et al. (2017)). Due to the complexity of and the limited available
time for rescheduling, many models and algorithms were designed to support dispatchers to
take a quick and efficient decision but very few of them have been implemented (Törnquist
(2006)). Consequently, most of the rescheduling tasks are done manually, especially for
freight trains since their timetable is more flexible than that of passenger trains (Palmqvist
et al. (2022)). This puts more weight on the dispatchers’ innate characteristics, such as stress
tolerance, good short- and long-term memory, a short reaction time, convergent thinking.
These and other characteristics are among the highest ranked requirements for selecting
train dispatcher candidates (Gertler (2003)). Over time, dispatchers sharpen their skills by
receiving formal training and by accumulating experience, which make them qualified for
controlling more complex and busier geographical areas (Huang et al. (2018)).

In an environment with such a huge responsibility, a lack of proper WL policies and their
accurate implementation may result in very serious consequences (NTSB (1998)). Thus,
WL level is an important aspect for train dispatchers and must be taken in consideration
when designing control areas and constructing shift schedules.

2.2 Shift Scheduling

As labor cost has a major weight on the companies’ economy, many employers are very con-
cerned of making their staffing process as effective as possible. This means that the staffing
level should neither be too low, which would reduce the customers’ service level, nor too
high, which would increase the total labor costs. This interest from the companies resulted
in an extensive exploration of the area of personnel scheduling during the last decades. As a
limitation in our literature review, we focus on shift scheduling at fixed work places where
the task load is continuous and not given by predefined and timed specific tasks, which is
the case in some professions like airline and train crew.

Baker (1976) categorized personnel scheduling into three categories: shift scheduling
over one day; scheduling days-off patterns over longer time horizons; and the combination
of the first two. The shift scheduling problem was first presented by Dantzig (1954) as a
set-cover problem where the objective function was to minimize the total labor cost. This
approach becomes impractical for solving instances with a larger number of shift patterns,
especially in cases with temporal fluctuation of demand. To reduce the memory usage and
computation time, Bechtold and Jacobs (1990) implemented an implicit modeling approach,
which yielded an equivalent formulation to the one by Dantzig, where breaks are assigned
flexibly.

Apart from the labor cost, researchers pointed out different aspects to consider dur-
ing the construction process. Moen and Yu (2000) examined the relationship between the
number of working hours and the life quality in terms of stress, overload and work/family
conflicts. Colligan and Rosa (1990) studied the effect of shiftwork type on the employ-



ees’ social and family life, where the shiftwork types are fixed days, fixed afternoons, fixed
nights and rotating shifts. Barnett (2006) noted how the employees’ life quality is impacted
not only by the number of working hours but also by the distribution of these hours, espe-
cially in today’s society where nonstandard working schedules are becoming more popular.
Ahasan (2002) highlighted the importance of an effective design of shift schedules that takes
in consideration job satisfaction and the social life of the employees. Since the effectiveness
of a design is affected by the level of automation and the number of dispatchers, Zeilstra
et al. (2017) developed the WASCAL-Tool to predict the staffing level for train dispatch-
ing given a certain level of automation. Cunha et al. (2020) evaluated the benefits of 12-h
working shifts and denoted its acceptance among the industrial workers despite its negative
impact in terms of fatigue, muscle pain and sleep deprivation.

During the last decades, several approaches have been developed to model and solve
shift scheduling problems in many different sectors. Alfares (2007) formulated an Integer
Programming (IP) model for staffing and scheduling of operators in an IT-help center. In
the first step, the author estimated the hourly labor demand based on the number of received
calls, and then used the estimated demand to determine the weekly schemes with the lowest
labor cost. Bard, Binici, et al. (2003) also used an IP approach to schedule postal service
operators and evaluated different scenarios, such as the usage of part-time workers, restrict-
ing two days off to be consecutive, and other parametric manipulations. Wright, Bretthauer,
et al. (2006) presented a multi-objective nonlinear integer model to schedule nurses, where
the first objective function is to minimize the total regular time and overtime wage, and
the second objective is to increase the job satisfaction by minimizing the total number of
undesirable shifts per nurse. That model was improved by Wright and Mahar (2013), who
argued the benefits, in terms of lower labor costs and higher job satisfaction, of having a
centralized nurse scheduling for all hospital departments. Breugem et al. (2022) introduced
the fairness-oriented crew rostering problem, where they optimize cyclic rosters consider-
ing explicitly the trade-off between the fairness and attractiveness of the assignments as
perceived by the employees. Zhong et al. (2017) proposed a two-stage heuristic algorithm
for nurse scheduling and rostering (i.e., assigning shifts to individual workers) taking into
consideration a fair distribution of working weekends among the caregivers. Another two-
stage approach was proposed by Kim and Mehrotra (2015) who integrated nurse staffing and
scheduling given a stochastic patient demand. Hur et al. (2019) formulated a multiple-stage
optimization model for airport baggage handlers under uncertain demand and argued the
benefits of using flexible breaks in the resulting shifts. Lapègue et al. (2013) presented what
they call the Shift-Design Personnel Task Scheduling Problem with an Equity Criterion,
where they optimized shift schedules for pharmaceutical personnel with the goal of hav-
ing the fairest possible distribution of task load among the employees. Other optimization
methods have been implemented to solve scheduling problems, such as column generation
(Bard and Purnomo (2005); Al-Yakoob and Sherali (2008)), simulating annealing (Akbari
et al. (2013); Cordeau et al. (2010)) and genetic algorithms (Frey et al. (2009). Recently,
Josefsson et al. (2017) formulated a Mixed Integer Linear Program (MILP) to construct ros-
ters for air traffic controllers operating from a remote tower center. Their model minimizes
the number of used controllers allowing some of them to control several airports simulta-
neously based on the actual number of movements (departures/arrivals) in each airport. We
will formulate an IP problem using a similar modelling approach, adapted to the railway
dispatching case.



3 Problem Statement

Given: A set of geographical areas covering a railway network and a set of subsets rep-
resenting different combinations of these areas; a set of train dispatchers; a list for each
dispatcher describing the areas for which they hold an endorsement; a set of time periods;
task load values representing the train movements in each area and time period; an upper
bound on the task load per dispatcher and period; upper and lower bounds on the shift length
and the resting period between two shifts; and an upper bound for the number of controllable
areas per dispatcher per period.
Find: A one-day shift schedule that uses the fewest possible dispatchers while respecting
the following legal and operational constraints, that:

• Each area is assigned a dispatcher in every time period

• Dispatchers are assigned one, or several combinable areas, for which they hold an
endorsement

• Each dispatcher shift complies with the upper and lower bounds on the shift length
and the resting periods between shifts

• The task load for each dispatcher does not exceed TLmax in any time period

4 The Optimization Model

In this section, we present the optimization model for shift scheduling for train dispatchers.
We start by describing the model notation in Subsection 4.1, then we present its mathemati-
cal formulation in Subsection 4.2. To formulate the legal and operational constraints, we use
information obtained from the union agreement (Trafikverket (2019)) and from interviews
with experts from Trafikverket.

4.1 Model Notation

Table 1: Model Parameters
Parameters Description
D set of train dispatchers, indexed by i
A set of geographical areas, indexed by j
P set of time periods, indexed by k
C set of area combinations, indexed by ℓ
TLj,k task load in area j during period k
TLmax maximum allowed task load
Amax maximum number of assigned areas to a dispatcher per period
ei,j ∈ {0, 1} =1 if dispatcher i holds an endorsement for area j
Tmin minimum shift length (in time periods)
Tmax maximum shift length (in time periods)
Rmin minimum number of rest periods between two shifts
p = |P | number of time periods in the time horizon



The input to the model is a set A of geographical areas of the railway network. Each
area j accommodates train traffic that should be controlled around the clock. During a time
period k each area should be controlled by exactly one dispatcher i from the set of dispatch-
ers D. A dispatcher i can be assigned at most one area combination ℓ with the condition that
i holds an endorsement for all the areas in ℓ. A dispatcher can simultaneously be assigned
an area combination with more than one area if the sum of task load TLj,k over the assigned
areas does not exceed TLmax. As a simplification, we assume that the task load is given
by the number of train movements in each area. The set C of area combinations contains
subsets of areas that are combinable, where each subset in C consists of areas that form a
connected component in the network’s graph. Given the limitation on the number of control-
lable areas by a single dispatcher during each period, the cardinality of each assigned area
combination ℓ should not exceed Amax. In our model, we take care of this constraint when
we generate the set C. Legal restrictions determine the allowed shift length, which should
not be below or above the values Tmin and Tmax, respectively. Moreover, a minimum num-
ber of rest periods, Rmax, is required between two consecutive shifts. The constraints on the
shift length and resting periods are modelled based on the strong formulation for min/max
on/off sequences presented in Pochet and Wolsey (2006), including a crew usage variable
in a similar way as done by Lidén et al. (2018). For the summary of the parameters used in
the model, see Table 1.

4.2 Mathematical Formulation

In this section, we present the mathematical formulation of the optimization problem, while
in Table 2 we describe the model’s variables. The constraints are formulated in Con-
straints (1)-(15).

Table 2: Model Variables
Variables Description
xi,j,k ∈ {0, 1} =1 if dispatcher i is assigned area j during period k
ci,ℓ,k ∈ {0, 1} =1 if dispatcher i is assigned area combination ℓ during period k
yi,k ∈ {0, 1} =1 if dispatcher i is at work during period k
vi,k ∈ {0, 1} =1 if dispatcher i starts a shift at the beginning of period k
qi ∈ {0, 1} =1 if dispatcher i is used during some period

∑
j∈A

xi,j,k · TLj,k ≤ TLmax ∀i ∈ D,∀k ∈ P (1)

xi,j,k ≤ ei,j ∀i ∈ D,∀j ∈ A,∀k ∈ P (2)

vi,k ≥ yi,k − yi,(k−1)(mod p) ∀i ∈ D,∀k ∈ P (3)

vi,k ≤ yi,k ∀i ∈ D,∀k ∈ P (4)
k∑

µ=k+1−Tmin

vi,µ(mod p) ≤ yi,k ∀i ∈ D,∀k ∈ P (5)

k∑
µ=k+1−Tmax

vi,µ(mod p) ≥ yi,k ∀i ∈ D,∀k ∈ P (6)



vi,k ≤ qi ∀i ∈ D,∀k ∈ P (7)∑
k∈P

vi,k ≥ qi ∀i ∈ D (8)

yi,k ≤
∑
j∈A

xi,j,k ∀i ∈ D,∀k ∈ P (9)

yi,k ≥ xi,j,k ∀i ∈ D,∀j ∈ A,∀k ∈ P (10)

k+Rmin∑
µ=k+1

vi,µ(mod p) ≤ qi − yi,k ∀i ∈ D,∀k ∈ P (11)

∑
i∈D

xi,j,k = 1 ∀j ∈ A, k ∈ P (12)

xi,j,k ≥ ci,ℓ,k ∀i ∈ D,∀k ∈ P,

∀ℓ ∈ C,∀j ∈ A : j ∈ ℓ (13)∑
ℓ∈C

ci,ℓ,k = yi,k ∀i ∈ D,∀k ∈ P (14)

xi,j,k ≤ 1− ci,ℓ,k ∀i ∈ D,∀ℓ ∈ C,

∀j ∈ A \ {ℓ}, ∀k ∈ P (15)

Constraint (1) prohibits the task load for each dispatcher during each period to not ex-
ceed TLmax. Constraint (2) allows the assignment of an area only to a dispatcher that
holds the corresponding endorsement. Constraints (3) and (4) connect the variables yi,k
and vi,k. Constraint (5) guarantees the minimum shift length, by assuring that whenever a
dispatcher starts a shift at some period, this shift can end only after at least Tmin working
periods. Similarly, Constraint (6) imposes a limit on the maximum allowed shift length.
Constraints (7) and (8) connect the variables vi,k and qi, by assuring that once a dispatcher
i starts a shift at any period then the correspondent qi is set to 1. Constraints (9) and (10)
connect the variables xi,j,k and yi,k, such that whenever a dispatcher is at work in a given
period then at least one area should be assigned to that dispatcher during that period. At the
same time if yi,k is set to 0, i.e., a dispatcher is not working in a given period, then no areas
are assigned to that dispatcher during that period. Constraint (11) assures the minimum rest
periods between two consecutive shifts by prohibiting any dispatcher from starting a new
shift within Rmin periods after finishing a previous one. Equation (12) makes sure that
each area is assigned to exactly one dispatcher during each period. Constraint (13) forces
the assignment of all areas within a given subset of areas ℓ at a given period to the same dis-
patcher if this one is assigned that area combination ℓ during that period, while equation (14)
imposes the assignment of exactly one area combination to each working dispatcher at each
working period. Finally, Constraint (15) makes sure that each dispatcher during each pe-
riod is not assigned areas that are not in the subset of the assigned area combination of that
dispatcher during that period.

The objective function minimizes the total number of used dispatchers and is given
by (16).

min .
∑
i∈D

qi (16)



5 Experimental Study

In this section, we test our IP model using artificial data that has a real-world size as in
Malmö dispatching center and its corresponding covered geographical areas. The reason
behind using artificial data are confidentiality constraints for accessing and publishing the
real data. We run all our experiments on an HP laptop with a processor AMD Ryzen PRO
and a 16 GB RAM. We implemented the model using Python 3, and we solved it using
Gurobi Optimizer version 9.5.1.

5.1 Base Scenario

We start by generating a set of 15 geographical areas representing the region controlled by
a dispatching center. Figure 1 illustrates the layout of these geographical areas.

Figure 1: The geographical areas that cover the railway network

An area, depending on its size and complexity, could be a single-track, a double-track
or a junction, which we denote as a ”complex area”. We estimate the task load in the
single- and double-tracks as equal to the number of movements per time period present in
these areas. In an actual working situation, train movements affect task load in an area
depending on its type, i.e., a task load generated by x train movements in single-track area
may correspond to the same task load generated by α · x movements in a complex area.
This is because the latter one usually is smaller and trains will transit through it in a shorter
time compared to a single- and double-track, which gives a higher dispatching task load.
In our experiments, we assume the factor α equal to 3. During the night (00-06 a.m), train



movements in a single track are at most one per period, yet the task load is still higher
because of the infrastructure maintenance that takes place during these periods. To account
for these, we estimate two train movements per period as a contribution of maintenance
to the task load. During rush hour, the number of train movements is higher than during
the rest of the day, which contributes to a higher task load. Based on an interview with
experienced train dispatchers from Malmö dispatching center, we generated an estimation
of the task load in each area and time period. In Table 3, we present the areas, which type
they are, and the sets from which we randomly draw the numerical value of train movements
in these areas.

Table 3: Type of areas, and train movements value (randomly chosen from the given set) for
different time periods

Type and Night time Morning rush Evening rush Day time
(list of areas) (0-6) (6-9) (15-20) (9-15 & 20-24)
Single-track {2,3} {14,15,16} {14,15,16} {9,10,11}

(1,10,11,12,13)

Double-track {9,10,11} {9,10,11} {19,20,21} {9,10,11}
(2,5,6,8,9,14,15)

Complex {10,11,12,13,14} {13,14,15,16} {14,15,16,17} {10,11,12,13,14}
(3,4,7)

Table 4: Parameter values in the base scenario
Parameter Value
|A| (number of areas) 15
|D| (number of available dispatchers) 22
Tmin 4
Tmax 11
Rmin 11
TLmax 30
|ℓ| ∈ C (max. size of area combinations) <= 3

For all the experiments, we set the lower and upper bounds for the shift length, Tmin

and Tmax, to 4 and 11 periods, respectively, and we set the minimum resting period Rmin to
11. For simplicity, we assume that the maximum manageable number of train movements
TLmax per each dispatcher is 30 movements per time period, but this parameter could be
customized according to each dispatcher’s ability and task load tolerance. These param-
eter values are based on the information from the union agreement and the experts from
Trafikverket. Moreover, we consider a time horizon of 24 hours where each unit period is
equal to one hour. For the set of available dispatchers, we start with a low value and gradu-
ally increase it until obtaining a feasible solution. In the base scenario, we have 22 available
dispatchers, where all of them have endorsements for all the areas, but each dispatcher can
not control more than three areas at any time period, i.e., the cardinality of any area com-
bination ℓ is at most three. In Table 4, we present the values of the parameters used in the
base scenario.



Figure 2: An optimum one-day shift schedule of the base scenario, where each row repre-
sents a shift for a dispatcher and the columns represent the time periods (from 00 to 23).
The numbers in the cells show the assigned areas per dispatcher and working period



The result from this run is a shift schedule with the minimum number of dispatchers,
that determines the shift’s start and end for each one of the used dispatchers. We show the
resulting schedule in Figure 2, where 21 dispatchers were used to control just up to three
areas each. All dispatchers but 3, 13, 16 and 19 were assigned three areas during some
period. As expected, the three complex areas 3, 4 and 7 are never simultaneously assigned
to any dispatcher during rush hour since the total task load in that case would be greater
than TLmax. Most of the shifts has the maximum allowed length, while the shortest one
is four hours long. In our output schedule, dispatchers often work with one set of areas
in one period and with a complete different set in the consecutive period—they switch the
areas assigned to them. As we do not steer towards fewer area switches, this in an expected
behavior. However, we will integrate constraints on more practicable shifts in future work.

To evaluate our results and to be able to compare the different experiments, we looked at
the following metrics: total number of used dispatchers; minimum, maximum and average
shift length; average number of assigned areas per working period for all dispatchers; and
the run time. The values of these metrics for the base scenario are presented in Table 5.

Table 5: Results for the base scenario
Metric Units Notation Value
Total number of used dispatchers T 21
Minimum shift length Hours m 4
Maximum shift length Hours M 11
Average shift length Hours L 10.23
Average number of assigned areas A 1.67
Run time Seconds R 57

5.2 Changing the Endorsement Ratio

In this experiment, we change the ratio of areas for which a dispatcher holds an endorse-
ment. We assume the same ratio for all dispatchers, and we ensure different subset of areas
for each dispatcher (such that the endorsements of all dispatchers cover all areas). In the
first instance, we set the endorsement ratio to 1/2 and we call this E1/2, while in the second
instance we decrease the ratio to 1/3 and we call this E1/3.

In Table 6, we present the results of the instances E1/2 and E1/3, together with results
from other experiments. To compare the results from different instances we use the same
metrics as in Table 5.

In instance E1/2, decreasing the endorsement ratio by one-half does not affect the objec-
tive function value, which is 21 used dispatchers, while in E1/3 22 dispatchers are needed.
The minimum and average shift length increases in both instances, while the run time de-
creases by around 65%. This decrease could be explained by the search space reduction due
to the endorsement limitation. For the same reason the average number of assigned areas
decreases to 1.49 in E1/3, while it remains unchanged in E1/2.

5.3 Changing the Maximum Cardinality of Area Combinations

This experiment is a set of three instances, {M4,M2,M1}, where in each instance we set
the maximum cardinality of area combinations to four, two and one, respectively. The



corresponding results in Table 6 show that the total number of used dispatchers does not
change when we allow area combinations of cardinality four (M4). A reason for this is
that usually most of the generated area combinations of cardinality four would have a total
task load greater than TLmax, thus, they cannot be part of a feasible solution. When we
restrict the cardinality to two (M2), the number of used dispatchers increases only by one,
compared to the base scenario. This small effect could be attributed to the fact that some few
area combinations became infeasible while initially they were feasible. The effect becomes
clearly observable when we set the maximum cardinality to one (M1), which results in 33
used dispatchers.

Comparing the run time within this experiment’s instances, including base scenario,
shows that higher values for the cardinality of area combinations give an increase in run
time. This observation is reasonable since decreasing the number of generated area combi-
nations would decrease the number of variables reducing the search space and, thus, reduc-
ing the run time. We also observe that the average number of assigned areas increases when
the maximum cardinality of area combinations is higher. This relation is not linear since
when we increment the cardinality from one to two we get highest increase in the average
of assigned areas, while the increase is lower when we further increment the number of al-
lowed area combinations. A reason for this is that furtherly increasing the cardinality does
not necessarily mean that the high-cardinality area combinations could be exploited, since
the task load of these combinations would more likely exceed TLmax, and, therefore, they
would not be used in a feasible solution.

We observe that the average shift length decreases when the cardinality of area combina-
tions increases. The highest average shift length, as expected, is obtained when dispatchers
could not be assigned more than one area at a time. This is because each working dispatcher
is used as long as possible before using an extra one, which can be seen from the value of
the minimum shift length in instance M1. For the maximum shift length, we observe that
it was 11 for all the experiments presented in Table 6, which is equal to the upper bound
Tmax. This also makes sense, given that the objective function is to minimize the number of
used dispatchers, and once a dispatcher is used then they are exploited as much as possible,
leading to long shifts, before needing more dispatchers. For the minimum shift length, we
could not see any connection with the maximum cardinality of area combinations, which
was also expected since the minimum shift length cannot be controlled, even indirectly, by
the cardinality of area combinations. We can confirm this by considering the shift schedule,
presented in Figure 2, where the minimum shift length was four hours (see dispatcher D19).
Having the same area combinations as in this solution, we can easily manipulate the shifts
and get another solution with the same objective value. An example of this manipulation

Table 6: Results for changing the endorsement ratio, and the maximum cardinality of area
combinations

Instance T m M L A R
Base 21 4 11 10.23 1.67 57
E1/2 21 9 11 10.86 1.67 20
E1/3 22 10 11 10.95 1.49 19
M4 21 5 11 10.09 1.7 97
M2 22 4 11 10.54 1.55 39
M1 33 10 11 10.91 1 29



is to move parts of the shift assigned to dispatcher D18 to D19, which would make D18
having the minimum shift length of six hours. Figure 3 shows how this shift manipulation
could be done.

Figure 3: An example of two manipulated shifts with different minimum shift length but
with the same objective value (number of used dispatchers)

5.4 Changing the Total Number of Areas

In this subsection, we consider two experiments with three instances each. In each of the
experiments, we gradually decrease the total number of areas, starting from the base sce-
nario with 15 areas, by removing an area in each instance. In the first experiment, we target
areas with a high degree in the area adjacency graph, where we consecutively remove areas
10, 7, and 5, to obtain the instances A10, A7,10, and A5,7,10, respectively. In the second
experiment, we target areas with a low degree in the same adjacency graph, and we con-
secutively remove areas 13, 15 and 14. We call these instances A13, A13,15 and A13,14,15,
respectively.

In both experiments (see Table 7), we observe a decrease in the number of used dispatch-
ers when we reduce the total number of areas, which is expected since the more areas we
have to cover, the more likely we will need additional dispatchers. While we can see an in-
crease in the minimum shift length in the first experiment as the number of areas decreases,
this trend does not hold in the second experiment. Thus, this confirms our conclusion that
the number of areas has no impact on the minimum shift length. We draw the same conclu-
sion for both the maximum and the average shift length.

The average number of assigned areas decreases when the total number of areas is re-
duced in the first experiment, but this was not the case in the second experiment, which
means that we cannot observe any connection between the average number of assigned ar-
eas and the number of areas.

Examining the computation performance, we can see that in the first experiment the run
time decreases as the total number of areas gets smaller, which seems reasonable. How-
ever, in the second experiment, this trend surprisingly does not hold. Indeed, the run time
increases notably in instance A13 compared to the base scenario, while another smaller in-



crease in run time occurs between instances A13,15 and A13,14,15 when we furtherly remove
area 14. A plausible explanation for the increase in run time in A13 could be that area 13 can
be assigned to a dispatcher either alone, together with 12 or as a triple with 11 and 12, where
the last two cases would usually appear in an optimum solution due to their efficiency. This
remark is confirmed by the optimum solution presented in Figure 2, where area 13 was as-
signed alone to a dispatcher during only 17% of the time periods, and that for the remaining
of the time, 13 was only combined with 12 or with 12 and 11 together. These combinations
dominated in the optimum solution, while alternative combinations that include areas 11,
12 or 13, were not interesting for further evaluations. When we removed area 13, many
more new possible solutions needed to be evaluated, which could have led to a higher run
time. The reason behind designing this last experiment was to show that the properties of
the areas, in this case the degree in the area adjacency graph, may affect the run time more
than the total number of areas.

Table 7: Results for changing the total number of areas
Instance T m M L A R
Base 21 4 11 10.23 1.67 57
A10 20 8 11 10.05 1.6 39
A7,10 19 10 11 10.95 1.5 25
A5,7,10 18 11 11 11.00 1.45 21
A13 20 8 11 10.55 1.59 305
A13,15 18 5 11 10.05 1.72 245
A13,14,15 17 5 11 10.58 1.6 252

6 Conclusions and Future Work

In this paper, we formulated an IP for automating shift scheduling for train dispatchers.
Apart from legal and operational constraints that are similar to shift scheduling problems
for many other professions, we integrated coverage of connected geometric areas. In this
first work on train-dispatchers shift scheduling, we minimize the number of dispatchers to
create a baseline for future optimization using our model. Moreover, we focus on one-day
shifts.

We ran experiments on real-world sized instances. The run time for different instances
was between 19 and 305 seconds, which is fast enough for tactical planning. Moreover, we
tested the model on real-world instances provided by Trafikverket and we got similar run
times. Unfortunately, these results could not be published due to the mentioned confiden-
tiality constraints.

To gauge the behavior of our model, we ran three sets of experiments: varying the ratio
of areas for which each dispatcher is qualified, the upper bound on the number of areas
that can be simultaneously monitored by one dispatcher, and the total number of areas in
the instance. Maybe surprisingly, decreasing the number of areas does not always reduce
the problem complexity. We highlight a dependence on the degree of the removed areas
in the area-adjacency graph: deleting high-degree areas decreases the complexity, deleting
low-degree areas may not do so.

The average and minimum shift length are not clearly connected to the parameters of



the input—the model only enforces an upper and a lower bound. Hence, if some fairness
between shifts is desirable, this needs to be integrated explicitly.

In future work, we aim to investigate further objectives (e.g., minimizing the number
of areas assigned to a single dispatcher, minimizing the number of switches between areas
in a shift). We also plan to expand the time frame to several weeks—which includes new
constraints on the maximum working time during a week depending on the time of day
at which the work is performed. Additionally, we intend to adapt our model for ad hoc
rescheduling in case of some expected but stochastic events, such as weather or unplanned
track repair.
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