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Abstract

This work deals with geometric problems and the use of limited capability
agents for these problems. Exploration and guarding problems have been ex-
tensively studied in computational geometry. The basic task is to monitor an
environment (a polygon) either with a mobile guard or with a number of sta-
tionary guards (or guards with hard restrictions on the allowed movements).
Though all these problems are easy to formulate—and have real-world in-
terpretations that vividly illustrate them—some of these problems (as the
classical art gallery problem) are hard to solve. The task of exploring an
environment becomes more challenging if the environment is not known in
advance, that is, there is no given ground plan and only areas that have
already been visibly encountered by the explorer are known. Problems with
this kind of uncertainty are called online problems. For offline problems the
ground plan of the environment is known in advance. In this work we study
one offline exploration problem and one exploration and guarding problem
in the offline and online version, where the focus is on the latter. For our
problems we do not deal with “almighty” explorers, but face limits on their
perceptive capabilities. Other types of geometric problems can exploit this
kind of limited agents: We present an exact and fast algorithm for an image
analysis task with polyomino-shaped objects on a grid.

Distributed Vision with Smart Pixels. An important image analy-
sis task is the identification of objects present in a given image. If these
objects are to be processed automatically, not only the identification of the
objects themselves, but also of certain attributes is of interest. The images
we treat are pixel (grid) images, with a possibly huge number of intertwined
objects. We make an assumption on the pixels: Besides light detection, they
can perform simple computations and communicate with their grid neigh-



bors (smart pixels). Our goal is to extract attributes, such as the center of
gravity or orientation, for each object in the image. In particular, we want
to give a fast algorithm for this task. We show how the use of mobile agents,
mimicked by messages sent by the pixels, allows for an exact algorithm—an
agent sweep—that can cope with intertwined objects. We present how the
attributes can be expressed as moments (of a random variable, considering
the pixels as a point set in R2) and how the sweep accumulates the necessary
information. For the algorithm we prove a runtime of only O(W +H), with
W and H being the width and height of the smallest bounding box for an
object, respectively.

Exploration with a Myopic Watchman with Discrete Vision. In the
classical watchman route problem the task is to find a shortest tour for an
explorer such that each point of a given polygon is visible from at least one
point of the tour. For this problem exact algorithms for a variety of polygon
classes exist. We study this problem with two restrictions on the watchman’s
capabilities: The scan range is limited and visibility information can only be
acquired at discrete points, “scanpoints”. A scanpoint in combination with
all points of the polygon that can be seen from the point and lie within its
scan range form a scan. The scans must fully cover the given polygon. The
cost for a tour of this watchman is a linear combination of tour length and
number of scan points used along this tour. We show that this problem
is NP-hard and present approximation algorithms for different variants: A
2.5-approximation for rectilinear grid polygons and unit L∞ scan range, a
4-approximation for rectilinear grid polygons and unit L2 scan range and a
max(21
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scan range and a bounded ratio r/a between visibility range r and minimum
side length a. All these approximation algorithms can also be applied for
the bicriteria version, that is, approximating the scan number and the tour
length separately.

Exploration and Triangulation with a Swarm of Robots. The art
gallery problem asks for a minimum number of (stationary) guards that al-
low for visibility coverage of a given polygon. Another classical problem in
computational geometry is triangulation: The partition of a given polygon
into triangles. We study a guarding problem linked to both of these prob-
lems: A swarm of agents with limited communication range has to establish
a triangulated network in a given polygon. The edge lengths are limited to
the communication range. The task is not only to give the positions, but to
move to these locations in a connected fashion. Our goal is to minimize the
number of robots used for this task, or, if the number of robots is limited,
to cover as much area as possible with the triangulation established by these
robots. We present NP-hardness results for both problems. Our focus is on



the online variants, we give a lower bound of 6/5 for the competitive ratio
for any strategy for the first problem, as well as a 3-competitive strategy.
We prove that the second problem does not allow for a constant competitive
ratio.





Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit geometrischen Problemen und
der Verwendung von Agenten mit eingeschränkten Fähigkeiten für diese Pro-
bleme. Explorations- und Überwachungsprobleme wurden in der algorithmi-
schen Geometrie ausführlich betrachtet. Grundsätzlich besteht die Aufgabe
in der Überwachung einer Umgebung (eines Polygons) mittels eines oder
mehrerer mobiler oder stationärer Wächter (oder mittels mehrerer Agen-
ten, die in ihren Bewegungsmöglichkeiten stark eingeschränkt sind). Einige
dieser Probleme, wie das klassische Kunstgalerieproblem, können nur mit ho-
hem Aufwand gelöst werden. Die Aufgabe, eine Umgebung zu explorieren,
wird schwieriger, wenn die Umgebung nicht im Voraus bekannt ist, wenn
also kein Grundriß gegeben und nur Bereiche, die bereits wahrgenommen
wurden, bekannt sind. Probleme, die diese Art von Unsicherheit aufweisen,
werden als Online-Probleme bezeichnet. Bei einem Offline-Problem ist der
Grundriß der Umgebung von Beginn an gegeben. In dieser Arbeit betrachten
wir ein Offline-Explorationsproblem, sowie die Offline- und Online-Variante
eines Explorations- und Überwachungsproblems, wobei der Schwerpunkt auf
dem Online-Aspekt liegt. Die von uns betrachteten Wächter haben nur
beschränkte Wahrnehmungsfähigkeiten. Auch andere geometrische Probleme
können sich solch beschränkter Agenten bedienen: für ein Problem der Bild-
erkennung mit polyominoförmigen Objekten in einem Gitter stellen wir einen
exakten und schnellen Algorithmus vor.

Verteilte Sicht mit intelligenten Pixeln. Die Identifizierung von im
Bild auftretenden Objekten ist eine wichtige Aufgabe im Rahmen der Bild-
erkennung. Für den Fall der automatischen Verarbeitung dieser Objekte ist
nicht nur die Identifizierung der Objekte, sondern auch die Gewinnung be-
stimmter Attribute der Objekte von Interesse. Die von uns betrachteten



Bilder sind Pixelbilder, mit im Gitter angeordneten Pixeln und möglicher-
weise vielen, verwobenen Objekten. Wir treffen eine Annahme zu den Pixeln:
über die Lichterkennung hinaus sind sie zu einfachen Berechnungen und zur
Kommunikation mit ihren Gitternachbarn fähig. Daher sprechen wir von in-
telligenten Pixeln. Unser Ziel liegt in der Bestimmung bestimmter Objektat-
tribute, wie dem Schwerpunkt und der Orientierung, für alle im Bild auftre-
tenden Objekte. Insbesondere streben wir die Formulierung eines schnellen
Algorithmus für diese Aufgabe an. Wir zeigen, wie ein solcher exakter
Algorithmus unter Verwendung mobiler Agenten, implementiert durch das
Versenden von Nachrichten durch die Pixel, erreicht werden kann. Dieser
Sweepalgorithmus ist insbesondere in der Lage, verwobene Objekte zu be-
handeln. Wir zeigen, wie die Objektattribute mit Hilfe von Momenten (einer
Zufallsvariablen) ausgedrückt werden können (unter Betrachtung der Pixel
als Punktmenge im R2) und wie der Sweepalgorithmus die dazu notwendige
Information sammelt. Wir beweisen eine Laufzeit von O(W + H) für den
vorgestellten Algorithmus, wobei W und H die Breite beziehungsweise Höhe
der kleinsten Bounding Box bezeichnen.

Exploration mit einem kurzsichtigen Wächter und diskreter Sicht.
Für das klassische watchman-route-Problem liegt die Aufgabe im Finden
einer kürzesten Tour, so dass jeder Punkt des gegebenen Polygons von min-
destem einem Punkt der Tour sichtbar ist. Für eine Reihe von Polygonklassen
wurden für dieses Problem exakte Algorithmen angegeben. Wir betrachten
einen Spezialfall mit zwei Einschränkungen der Fähigkeiten des Wächters:
die Sichtweite ist beschränkt und nur an diskreten Punkten,

”
Scanpunkten”,

ist die Umgebungswahrnehmung möglich. Die an den diskreten Punkten
aufgenommenen Scans müssen das gegebene Polygon vollständig überdecken.
Damit ergibt sich auch eine Anpassung der Kostenfunktion für die Tour eines
Wächters – die Kosten stellen sich als Linearkombination aus Tourlänge und
Anzahl an Scanpunkten dar. Wir zeigen, dass dieses Problem NP-schwer ist
und stellen Approximationsalgorithmen für verschiedene Varianten vor: eine
2.5-Approximation für orthogonale Gitterpolygone und einen Einheitssichtra-
dius nach der L∞-Norm, eine 4-Approximation für orthogonale Gitterpoly-
gone und einen Einheitssichtradius nach der L2-Norm sowie eine max(21
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L2-Norm und einem beschränkten Verhältnis (r/a) von Sichtweite r und mi-
nimaler Seitenlänge a. Diese Approximationsalgorithmen können auch für
die Variante des Problems, bei der Scananzahl und Tourlänge getrennt ap-
proximiert werden, angewandt werden.

Exploration und Triangulierung mit einem Roboterschwarm. Beim
klassischen Kunstgalerieproblem soll die Anzahl der für die vollständige Über-
wachung notwendigen (stationären) Wächter minimiert werden. Ein weiteres



klassisches Problem der algorithmischen Geometrie ist die Triangulierung
eines Polygons – dessen Zerlegung in Dreiecke. Wir stellen ein zu bei-
den Problemen in Zusammenhang stehendes Problem vor: ein Schwarm
von Agenten mit beschränktem Kommunikationsradius soll ein trianguliertes
Netzwerk in einem gegebenen Polygon aufbauen. Der eingeschränkte Kom-
munikationsradius impliziert eine Beschränkung der in der Triangulation
auftretenden Kantenlängen auf dessen Wert. Die Aufgabe besteht nicht nur
in der Bestimmung möglicher Positionen für die Agenten, sondern auch im
Anfahren dieser Positionen unter Aufrechterhaltung des Zusammenhangs.
Ziel ist es die Anzahl der für diese Aufgabe verwendeten Agenten zu mini-
mieren, oder, falls nur eine beschränkte Anzahl von Robotern zur Verfügung
steht, die durch die aufgebaute Triangulierung überdeckte Fläche zu maxi-
mieren. Wir zeigen, dass beide Probleme NP-schwer sind. Unser Schwer-
punkt liegt auf den Online-Varianten der beiden Probleme. Wir geben eine
untere Schranke von 6/5 für den kompetitiven Faktor jeder Online-Strategie
und eine 3-kompetitive Strategie für das erste Problem an. Für das zweite
Problem zeigen wir, dass keine deterministische Strategie einen konstanten
kompetitiven Faktor erreichen kann.





Seht ihr den Mond dort stehen?
Er ist nur halb zu sehen
und ist doch rund und schön.
So sind wohl manche Sachen,
die wir getrost belachen,
weil unsre Augen sie nicht sehn.

Matthias Claudius, 1778
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CHAPTER 1

Introduction

Geometry is a branch of mathematics that everybody knows from school. It is
centuries old, with axioms already formulated by Euclid. Objects considered
in geometry include points, lines, planes, circles, angles and distances. The
original motivation of geometric research arose from “measuring the earth”,
which already indicates that besides the theoretical theorems the focus is on
the real world with its strong geometric reference. If, for example, a person is
located at home (position A) and wants to go to his office (position B), this
person would in general be interested in a short(est) path between A and B.
The positions can be described by coordinates in some coordinate system; if
A and B are located in the open countryside, the distance may be measured
according to the Euclidean metric, if the person is obliged to follow streets,
the Manhattan metric may be used. Thus, we have a geometric embedding
instead of two points whose positions do not provide any information on
distances; the distance measure is based on this embedding. Another example
arises from customer analysis: If we assume that a customer’s decision for a
certain shop is only influenced by the distance to the shop, a shop S wants
to determine all customers that choose S. Again, this set of customers is
given by the shop’s and the customers’ location in a geometrical embedded
environment. To give a final example, think of W , a night watchman in a
huge museum. He has to monitor all exhibits on his tour. The exhibits have
a certain position in the museum and the positions from which an exhibit is
visible depend on the location of obstacles like walls and doors.

What we can observe is not only this geometric reference, but there is
often a certain question for which we might seek an answer: What is the
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shortest path between A and B? What is the set of customers opting for
S? What is a shortest tour for W, such that following this tour allows W to
monitor all exhibits? In fact, we are not only interested in these answers for
particular positions A and B, for a particular shop S or a particular museum.
Instead, we want to give a solution for any such question (or at least for a
great many of these questions). Hence, we want to give an algorithm for the
problem.

A geometric context is often not present, and not necessary for the formu-
lation of an algorithm. For example, we can formulate and solve a shortest
path problem in a graph (e.g., using Dijkstra’s algorithm, see [Sch03]). The
edge lengths in this graph need not be related to the positions of the vertices,
i.e., we may impose an arbitrary distance measure.

However, geometry often helps to give an algorithm. In many scenarios
additional information provided by geometry is essential for a solution, or at
least allows for the design of faster algorithms. For example, the “customer
problem” presented above can be solved for shops in the plane: The Voronoi
diagram of the set of shops can be determined (see, e.g., Aurenhammer and
Klein [AK00]). These kinds of problems are the subject of computational
geometry.

Two classical problems in computational geometry are exploration and
guarding problems. The underlying task is to monitor an environment (a
polygon) with one mobile guard W or with a number of stationary guards
(or guards with hard restrictions on the allowed movements). In robot motion
planning, exploration refers to the task of finding a path such that every point
of the environment becomes visible from at least one point along the way.
Other popular problems in this context are navigation, the task of finding
a path to a target with known location, search, the task of finding a target
with unknown location, and localization, the task of identifying ones own
position in a known environment map. Over the years, these problems have
been studied for varying environments and robots with different capabilities;
other variants arise if a possibly huge number of robots is used rather than
a single robot. An example is the watchman route problem stated by Chin
and Ntafos [CN86], which asks for a shortest route for a single explorer
along which every point of the environment becomes visible. The challenge
is harder if the given polygon features holes—one may think of columns in
a hall. In fact, the problem is computationally hard, i.e., only enormous
computational effort can lead to an optimal solution for the problem. A
classical guarding problem is the art gallery problem, stated by Victor Klee:
A minimum number of (stationary) guards is to be positioned, such that
complete visibility coverage of the environment is achieved.
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(a) (b) (c) (d)

Figure 1.1: (a) An iRobot Roomba (image source: www.irobot.com), (b) an iRobot
Roomba equipped with a sensor node, (c) the 3D Terrestrial Laser Scanner RIEGL
VZ-400 (image source: www.riegl.com) and (d) the robot Irma3D (image source:
http://www.faculty.jacobs-university.de/anuechter/robots.html).

In a classical algorithmic approach all information is assumed to be given.
However, in many important scenarios we face a variety of restrictions. The
agents may have limited capabilities, or the information about the environ-
ment may not be available in advance (resulting in an online problem). In
addition, the explorer may have locally available information only; hence,
distributed algorithms try to solve a problem based on local computations
and communication.

Restricting the agents’ capabilities may result in agents that are closer
to “real” explorers. For example, the general statement of the watchman
route problem assumes that the explorer has continuous 360◦ vision and can
perceive objects at arbitrarily large distances—assumptions that hardly any
human or automatic explorer will match.

In recent years, technologies for autonomous robots improved tremen-
dously. Amongst other things this development resulted in commercially
available platforms. By now, some of these platforms are even designed for
basic everyday tasks such as vacuum cleaning, as is the iRobot Roomba
shown in Figure 1.1(a). The price of these robots has been decreasing and
the robots have gained popularity. The improved capabilities and compara-
tively low price makes their use for a great many tasks appealing. Still, they
come with limited capabilities compared to the “ideal” agent for these tasks,
leaving the agents with only local information.

In particular, swarms of robots become affordable. On the other hand,
using a swarm of simple robots, as the iRobot Roomba, requires coopera-
tion. The robots may easily be equipped with wireless sensor nodes (see
Figure 1.1(b)), enabling them to communicate with each other, but only
within a limited communication range.

Moreover, using commercially available platforms in the“as-is-state”after
delivery for some kind of perception task restricts the sensing range; sensing
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is restrained to contact-sensing bumpers and the like.

Not only the capabilities of commodity robots have improved. Also the
development of sophisticated mobile robots has advanced in recent years. For
example, the use of up-to-date 3D laser scanners, such as the scanner shown
in Figure 1.1(c), enhanced the perception of the environment of autonomous
robots; see Figure 1.1(d). This progress literally predestines those robots
for exploration tasks: A robot equipped with a 3D laser scanner allows for
sensing and—as it is mobile—it may be used for the exploration of an envi-
ronment. However, amongst other things, the operation of a laser scanner
limits the range of visibility—in comparison to an ideal agent with unlimited
visibility range. In addition, properly joining the single scans often asks for
a stationary scanner.

So, technical and price development allows for the use of these limited
capability devices. But, we have to deal with new algorithmic questions.

One approach is to consider the minimal necessary capabilities that allow
for a certain task. Suri et al. [SVW08] and Brunner et al. [BMS+08] classified
different robot models along these lines.

Here, we focus on using these agents for concrete geometric problems.
Obviously, an agent used for an exploration task needs to be mobile in order
to roam the polygon. We are interested in exploration strategies for a robot
with limited and discrete vision, like the robot equipped with a laser scanner
described above: the robot has a limited range of visibility and needs to be
immobile while taking a scan of the (polygonal) environment. Both moving
and scanning take time. Hence, when we ask for a shortest tour, these time
requirements should be reflected in the cost. That is, the cost function is a
linear combination of the tour length and the number of scans. This kind of
natural time measurement has not yet been considered.

Moreover, we consider the use of mobile agents—a swarm—for a guarding
task: agents with a limited communication range, as the Roombas equipped
with a sensor node described above, should be used to extend a given sensor
network into a polygon. The moderate price of these commodity robots
allows for their integration for this task. The goal is an extended network that
preserves communication lines among different agents. The agents have to
head for the positions in the environment. In particular, we ask for a certain
structure—a triangulated network: such a network allows for localization of
entities moving in the environment. Of course, we would like to cover the
entire region with the triangulated structure, or, in case we face a limit on
agents we are allowed to use, we would like to cover as much area as possible.

The surprising observation we can make is that this kind of mobile limited
capability agents can be of use also for other geometric problems. So far, we
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considered a single agent and a swarm of agents for which this restriction was
intrinsic and sought algorithms for the resulting problems. Using geometric
information and limited agents can also lead to better (i.e., faster) algorithms
for problems which at first sight actually only feature the geometric reference.

A video camera that records a picture uses a camera chip. These chips
are composed of sensor pixels, in general arranged in a rectangular grid. The
geometry of input objects—in particular if the picture is taken of objects
on a planar background—and the geometry of processors that capture these
objects is strongly correlated. Hence, for image analysis tasks we may exploit
this given geometry.

Technical development of camera chips allows for more than this geo-
metric match. “Smart” sensor pixels are equipped with a limited CPU and
limited local memory. Hence, instead of being restricted to the pure task of
light detection (and forwarding the obtained information), these pixels can
perform limited computations, communicate within a limited range and work
with a limited storage.

This kind of processor element grids has been used for a variety of non-
geometric problems. For example, Thompson and Kung [TK77] presented
an algorithm for sorting n2 numbers using a n × n grid of processor ele-
ments. Higher level image processing task have been considered by Miller
and Stout [MS85].

As described above, for image analysis tasks we can use the geometry.
Moreover, using such a smart pixel grid, we can simulate moving agents
with these pixels—by sending messages. Thus, those agents are limited in
computation and communication. We make use of these agents for a special
image analysis task. These agents are not intrinsic to the problem. We
aim at extracting information, such as an object’s orientation, for all objects
(black polyominoes) in a given black-and-white pixel image. The pixels of the
camera chip are “smart” as described above, and we use agents simulated by
these pixels for determining the desired information. The limited capability
agents allow for an algorithm that is faster than any centralized algorithm.

Thus, in this work we consider three geometric problems in 2-dimensional
space, each dealing with polygons or polyominoes. Moreover, the algorithms
we present make use of mobile agents with limited capabilites. For two
problems these agents are intrinsic, for one problem their use allows for a
fast algorithm.

Outline of this Thesis. In Chapter 2 we give basic definitions for the
rest of this work.
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Chapter 3 presents an algorithm for the problem of computing the size,
the center of gravity and the orientation of objects in a given black-and-white
pixel image. We describe how these attributes can be computed, in particular,
using a Principal Component Analysis, give a (distributed) agents’ sweep
over the objects that allows for the computation and analyze the algorithm’s
running time.

Chapter 4 studies a variant of the classical watchman route problem:
the myopic watchman problem with discrete vision. The agent exploring the
polygon has a limited range of visibility and is restricted to taking scans
at discrete points. In the classical problem we ask for a shortest tour, and
this refers to the tour length only. Of course, for the new problem we have
to adjust the objective function: The cost is a linear combination of tour
length and number of scans. Since both moving and scanning take time,
this reflects the search for a “shortest” tour in terms of time spent for the
entire coverage. Since we prove this problem to be NP-hard, our focus is on
approximation algorithms. For different variants of the problem, varying the
class of polygons and the norm for the scan range, we present approximation
algorithms.

The problem of exploring a polygon and establishing a triangulated net-
work with agents with limited communication range is studied in Chapter 5.
We aim at using a minimum number of agents for this task for the entire
region, or at maximizing the covered region if we face a hard limit on the
number of agents. We present complexity results. As the focus of interest is
the expansion of a network into a new, unknown area, we study the online
versions of the problem and give a lower bound on the competitive ratio for
any strategy and a competitive strategy for the first problem. For the second
problem we show that no competitive strategy exists.

Each chapter begins with a problem statement, necessary definitions for
the chapter and work related to the problem.

The work presented in this thesis was prepared in collaboration with
other people. The paper [FFK+09] (and a predecessor paper that did not
contain the distributed sweep [KKS+08]) forms the basis for Chapter 3. It was
prepared in collaboration with Sándor P. Fekete, Alexander Kröller, Dietmar
Fey, Marcus Komann, and Marc Reichenbach. Chapter 4 is based on the
paper [FMS10] (with a preliminary version [FMS09]). It was joint work with
Sándor P. Fekete and Joseph S.B. Mitchell. Chapter 5 is based on work
together with Sándor P. Fekete, Tom Kamphans, Alexander Kröller, and
Joseph S.B. Mitchell ([FKK+11]).



CHAPTER 2

Preliminaries

In this chapter we introduce basic concepts that are needed in the following
chapters. We do not give all terms in detail but explain the general concepts.
For rigorous definitions and more details we refer to textbooks for the different
topics. Definitions that we use only in a particular chapter, are given in the
beginning of that chapter.

Mathematical Basics. We let N denote the set of positive integers and
Z denote the set of all integers. The set of all rational numbers is denoted
by Q and the set of all reals by R. The n-dimensional vector space over the
reals is denoted by Rn. For a n-dimensional vector x the L2-norm (Euclidean

norm) is defined as ‖x‖2 := (
∑n

i=1 x
2
i )

1/2
, the L1-norm (Manhattan norm) as

‖x‖1 :=
∑n

i=1 |xi|, and the L∞-norm as ‖x‖∞ := maxi=1,...,n |xi|.
Algorithms and Computational Complexity. A problem Π is a general

question, for which we seek an answer. It consists of a set of parameters and
a description of desired properties of the answer, the solution. An instance
I ∈ Π of a problem defines values for all problem parameters. A decision
problem is a problem to which the answer is either “yes” or “no”. For an op-
timization problem an instance is given by a solution set S and an objective
function f : S → R. The answer is either the optimal value of the objective
function or, in case S = ∅, “infeasible”, or “unbounded”. For a maximization
problem the optimal value of the objective function, |OPT|, is maxx∈S f(x),
for a minimization problem minx∈S f(x). Each problem’s description implic-
itly defines an input alphabet and an encoding scheme (that maps problem
instances to a string of symbols from this alphabet). The input size of an
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instance I ∈ Π is defined as the number of symbols of the underlying alpha-
bet that are necessary to encode I. In general, binary encoding, that is, only
ones and zeros, is used. An algorithm for a problem Π is a precise sequence of
instructions that can be applied to any instance I ∈ Π and that guarantees to
end with a solution for I. We say that an algorithm solves a problem in poly-
nomial time if we can bound its running time for any I ∈ Π by a polynomial
function of I’s input size. A decision problem that allows for a polynomial
time algorithm belongs to the class P. If the running time of an algorithm
can be bounded by a polynomial function of the input size and the maxi-
mum input value, we say that the algorithm is pseudopolynomial. A problem
belongs to the class NP, if for every “yes”-instance there is a certificate that
can be checked in polynomial time. That is, a given solution can be verified
in polynomial time. Obviously, P⊆NP. We say that a problem Π is NP-hard
if Π ∈P also proves P=NP. It is widely believed that P6= NP. Under this
assumption NP-hardness of a problem implies that no polynomial algorithm
exists for this problem. NP-complete problems are NP-hard problems that
are also in NP. A polynomial time transformation of a problem Π′ ∈ NP into
an instance of problem Π is called a reduction. Such a transformation T pro-
duces for every input x of Π′ an input T (x) of Π such that the answer—“yes”
or “no”—for T (x) as an input for Π is the correct answer for x as an input
for Π′. Given such a reduction: If there is a polynomial time algorithm for
Π, then there is also a polynomial time algorithm for Π′. Thus, giving such
a reduction from an NP-complete problem Π′ proves Π to be NP-hard.

Decision problems can be derived from optimization problems. For exam-
ple, if we are given a maximization problem, that is, a problem that asks for
a solution with some maximum “profit” we may also add a numerical bound
B as a parameter and ask whether there is a solution resulting in a profit of
at least B. Hence, all the terms presented above are commonly used also for
optimization problems.

For further reading we recommend the textbooks by Papadimitriou [Pap94]
and Garey and Johnson [GJ90]. Garey and Johnson provide a detailed list
of NP-complete problems.

In particular for NP-hard problems we are interested in polynomial time
approximation algorithms. These do not necessarily produce an optimal solu-
tion for every instance of a problem, but guarantee to give a solution that is
at most a constant times the optimal solution (for a minimization problem).
So, if we consider a minimization problem, we want to bound |ALG|, the
objective function value computed by the algorithm ALG, in the form

|ALG| ≤ α · |OPT|+ β (2.1)

for constants α and β (α is also allowed to depend on the input size). An al-
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gorithm that allows for such a bound is called an asymptotic α-approximation
algorithm (or asymptotic α-approximation). For β = 0 ALG is called an ab-
solute α-approximation, we then refer to α as the approximation factor (or
approximation ratio). For a minimization problem α > 1, and we attempt to
obtain an approximation algorithm with an α as close to 1 as possible. For
a maximization problem the ≤ is substituted for a ≥ in Equation 2.1. In
this case α < 1 and again we are interested in an approximation algorithm
with an α close to 1. A polynomial time approximation scheme (PTAS) is an
algorithm that provides an (1 + ε)-approximation for any problem instance
and any ε > 0 (for a minimization problem). More precisely, a PTAS gives an
approximation algorithm for any fixed ε. Such an approximation scheme is
called a fully polynomial time approximation scheme (FPTAS) if the running
time can be bounded by a polynomial function of the input size and 1/ε.
Textbooks on approximation algorithms are provided by Hochbaum [Hoc97]
and Vazirani [Vaz01].

For the analysis of an algorithm’s runtime, we use Landau symbols. Given
two functions f, g : N → R, we say f is O(g(n)) (and denote it by f(n) =
O(g(n)) or f = O(g)) if: ∃c > 0, n0 ∈ N,∀n ≥ n0 : 0 ≤ f(n) ≤ c · g(n).
So, we use this notation to give an upper bound on f ’s running time. If an
algorithm’s input is from a set X and we are given a function f : X → R,
such that the algorithm terminates after at most αf(x) elementary steps (for
every possible input x ∈ X) we say that the algorithm runs in O(f) time.
The running time of the algorithm is said to be O(f). The definition of a
polynomial time algorithm can be given in terms of this notation: In case
f(n) = O(nk) for a constant k, we call f polynomially bounded. An algorithm
for which the running time is polynomially bounded runs in polynomial time.
For k = 1 the algorithm is called a linear-time algorithm. A lower bound
on the running time is denoted in the Ω-notation. We say f is Ω(g(n)) (and
denote it by f(n) = Ω(g(n)) or f = Ω(g)) if: ∃c > 0, n0 ∈ N,∀n ≥ n0 :
f(n) ≥ c · g(n) ≥ 0. In case there exists a q > 0 such that f(n) = Ω(qn), we
say that f grows at least exponentially. A function f with f(n) = O(g(n))
and f(n) = Ω(g(n)) is denoted by f(n) = Θ(g(n)). Hence, this denotes that
f and g have the same rate of growth.

The algorithmic notation we gave so far refers to an offline situation.
That is, the entire information is available from the start. An algorithm for
an online scenario with incomplete information (on future input) is analyzed
similar to an approximation algorithm. Again, we consider a minimization
problem. Here, the objective function value computed by the online algo-
rithm ALG, |ALG|, is compared to the value of an optimal offline solution,
|OPT|. The online algorithm is called a c-competitive algorithm if we can
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bound |ALG| in the form:

|ALG| ≤ c · |OPT|+ β (2.2)

for a constant β. We may refer to the algorithm as a strictly c-competitive
algorithm if β ≤ 0. c is called the competitive ratio or competitive factor
of the algorithm; it may be a constant or depend on the input size (but
not on the input). The competitive factor is larger than 1; we desire online
algorithms with a ratio as close to 1 as possible. Again, for a maximization
problem we modify Equation 2.2 by exchanging the “less than or equal to”
for a “greater than or equal to”. We recommend the textbooks by Fiat and
Woeginger [FW98] and Borodin and El-Yaniv [BEY98] for more details on
online algorithms.

Polygons and Graphs. A polygon P is given by a set of n vertices
v1, v2, . . . , vn and n edges v1v2, v2v3, . . . vn−1vn, vnv1 such that vivj and vkvl
for j 6= k do not share a point. The polygon is the closed finite region in
the plane bounded by the vertices and edges such that there exists a path
between any two points of P which does not intersect any edge. The edges
and vertices form the boundary of P . The boundary is denoted by ∂P (with
∂P ⊆ P ). Since the polygon is closed and bounded, the boundary consists
of cycles of edges. Two consecutive edges in a cycle share an edge. In case
the boundary consists of two or more cycles, P is a polygon with holes. If
the polygon has no holes, it is called a simple polygon.

A graph G is a triple (V,E,Ψ), where V denotes the finite set of vertices
(or nodes) and E denotes the finite set of edges. For an undirected graph
Ψ : E → {X ⊆ V : |X| = 2} and an edge is denoted as e = {v, w}. For
a directed graph (or digraph) Ψ : E → {(v, w) ∈ V × V : v 6= w} and
an edge is denote as e = (v, w). Often, only G = (V,E) is used. Two
vertices are said to be adjacent if they are joined by an edge. A sequence
v1, e1, v2, . . . , vk−1, ek−1, vk with ei 6= ej for 1 ≤ i < j < k is a walk in G,
which is closed if v1 = vk. A closed walk with vi 6= vj for 1 ≤ i < j < k is a
cycle. When a connected graph does not contain a cycle as a subgraph it is
called a tree. A path is a walk that visits no vertex twice.



CHAPTER 3

Distributed Vision with Smart Pixels

In this chapter we study the problem of extracting information, such as the
center of gravity, for objects given in a black-and-white pixel image. Instead
of using a single central processor we assume that the pixels of the grid
are “smart”: The pixels may communicate with their immediate neighbors
(exchanging low-level information) and perform simple computations.

3.1 Problem Description

Given a W × H black-and-white pixel image depicting several objects, we
would like to distinguish these objects and compute several attributes for
each object: its size, its center of gravity, and its orientation. Using a classical
algorithmic approach we could use a single central processor with access to
the information of all pixels. With this global information the processor is
then able to determine the desired attributes.

When looking at the real-life application that provoked our interest in this
problem, one is immediately convinced that the image processing described
above has to be extremely fast. A video camera at a robot arm, as shown in
Figure 3.1, should enable the robot to identify and seize machine pieces mov-
ing on a conveyor belt. In order to seize the objects the robot must compute
the object’s size, a point where it should grasp the object, e.g. the center
of gravity, and the orientation in space of all objects in the current image.
The machine pieces on the conveyor belt rapidly leave the robot’s range of
operation. Thus, actually seizing the objects requires a fast computation.
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Figure 3.1: Robot arms at a conveyor belt. image source: coriolinus @

www.flickr.com.

On the other hand, there is a special hardware that can be used; see Fig-
ure 3.2. In general, a camera chip is composed of sensor pixels arranged in
a rectangular grid. Each of the sensor pixels can detect light. While a stan-
dard pixel is limited to forwarding the data resulting from this perception to
a central unit, a smart pixel is able to process the pixel info, communicate
with its direct neighbors, to perform simple computations (such as addition
and subtraction), and to react to events. This hardware is not just a theoret-
ical concept, but actually does exist [FHL+04]. Instead of a single processor
we are confronted with many parallel processors, limited to local communi-
cation. This allows for a significant speedup. Another crucial observation
can be made: The geometry of the input and the geometry of the processor
locations are strongly correlated. The same holds for the size of the input
and the number of processors involved. Thus, relying on the processor grid
rather than on a single processing unit for the basic image processing, we
may achieve a faster computation.

For the concrete algorithm: Each sensor pixel is a processor, limited to
simple computations and communication with its neighbors. With those
pixels we simulate agents sweeping over the pixel image. Hence, those agents
are also limited in computation and communication. The decisions are made
based on local information only. The correlation between input and processor
location allows for a fast sweep that provides the desired attributes.

To clarify this, consider an object of Θ(WH) pixels and with a diameter
in Θ(WH), as shown in Figure 3.3. There is a lower bound of Ω(WH) on
the runtime for any centralized algorithm on such an object. In contrast, we
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will present a distributed algorithm with runtime O(W +H). Still, the final
computations and handling for whatever activity the machine was built, can
be performed by a centralized processor.

3.1.1 Problem Statement

We observe objects on one conveyor belt and can restrict ourselves to a
bichromatic image—enabling us to distinguish the objects from the belt. We
are given a black-and-white photo X overlayed on a pixel grid: Object pixels
are black, white pixels are part of the background. The size of this pixel
image is W × H. X may consist of multiple objects; see Figure 3.4. We
assume that the image is embedded in a grid of infinite size, such that we do
not have to deal with special cases in the notation we give below.

Pixels of the infinite grid do not have a unique identifier, that is, nei-
ther an ID nor coordinates. Thus, the pixels are identical—apart from the

grid of photo sensors

processor network

local memory

Figure 3.2: Schematic representation of the used hardware.



30 Chapter 3. Distributed Vision with Smart Pixels

Figure 3.3: An object with Θ(WH) pixels and with a diameter in Θ(WH). Example for
the lower bound of Ω(WH) for any centralized algorithm and for any distributed algorithm
that stays within the object.

color. With this assumption we may reset the pixel grid to an initial state
between consecutive runs without the need for a global initialization algo-
rithm. All pixels are initialized with the same state. Each pixel p is able to
communicate with its eight direct neighbors in L∞-distance 1. We denote
this set of neighbors by Γ(p) and name the pixels in Γ(p) by direction with
respect to p: N(p), NW(p), W(p), SW(p), S(p), SE(p), E(p), and NE(p), with
interpretation according to the cardinal points (of the compass). We define
Γ(p) := Γ(p) ∪ {p}.

We can use moving agents on our pixel grid. The agents have only local
behavior and knowledge. A moving agent is reflected by sending messages
from one pixel to a neighbor.

Reflecting the limited CPU and small capacity associated with a single
pixel, we only allow for the performance of simple computations (i.e., for

Figure 3.4: A black-and-white photo X with 4 objects.
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4p

SW(p) S(p)

W(p)

(a)

4p

SW(p) S(p)

W(p)

(b)

4p

SW(p) S(p)

W(p)

(c)

Figure 3.5: Two black pixels p and SW(p) (a). If S(p) and W(p) are white, they may
belong to the same object (b), but may not (c).

example addition and subtraction). Thus, in addition, the agents have only
limited computational power.

We assume the LOCAL model of Peleg [Pel00] for the communication
between pixels. Thus, the network (of pixels) runs in synchronized rounds,
with all pixels starting in the same round. Moreover, the local computation
is unlimited, i.e., each pixel may perform any computation based on the
data on hand. Also, the messages sent by the pixels of the grid may have
unlimited size. Some more assumptions are made for the models of Peleg:
All processors, that is, pixels, in our pixel grid are fault free. No pixels will
be added or removed from the grid during the run of the algorithm. Our grid
has infinite size, so no pixels can be added.

The black pixels define a set of objects in X ; an object consists of a con-
nected set of black pixels. We define connectivity horizontally and vertically
only. So, two pixels p1 and p2 in X belong to the same object if we can
connect p2 to p1 by a path in X (i.e., a path using only black pixels), such
that all pixels on this path are either vertically or horizontally adjacent to
the next pixel on the path. In terms of the notation from above: Two black
pixels p and SW(p) may or may not be part of the same object if S(p) and
W(p) are white; see Figure 3.5. Note that the communication graph and
the connectivity graph differ: Communication is possible with eight direct
L∞-neighbors, whereas for connectivity only the neighbors in L1-distance 1
are considered.

Task. Based on the black-and-white pixel image the different objects
(the connected components of the 4-regular grid graph with the connectivity
definition from above) are to be distinguished. For each object certain at-
tributes should be computed: the object’s size (i.e., number of black pixels
occupied by the object), its center of gravity, and its orientation. Here, we
define the orientation to be the direction of maximum variance.
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Organization of this Chapter. The remainder of the current section
presents related work. In Section 3.2 we describe how the desired attributes
can be deduced from the moments of the point set of object pixels and how
relative moments are computed. We present our algorithm in Section 3.3. In
the subsequent Section 3.4 we prove the algorithm’s correctness and analyze
its runtime. Moreover, we analyze the number of agents per pixel and the
algorithm’s applicability. We conclude in Section 3.5.

We published the results presented in this chapter in [FFK+09] (with
a predecessor paper [KKS+08] which presented the distributed mechanisms
to compute the desired values, but did not contain the distributed sweep
algorithm).

3.1.2 Related Work

Mesh-Connected Computers. Mesh-connected computers (MCCs) have
the same layout as the pixel grid we consider and have been considered for
a long time. An MCC is a single instruction stream – multiple data stream
(SIMD) computer. An MCC consists of processing elements (PEs) arranged
in a n×n grid (n2 PEs). In general, the assumption is made that n is a power
of two. Each PE may communicate with its 4 neighbors (to the north, east,
south and west). For our model we assume communication with 8 neighbors.
This does not significantly change the setting when we measure in O-notation
only. Each PE has (a constant number of) registers of size Θ(log(n)) and
can perform standard arithmetic operations (on the content of these regis-
ters) in constant time. Sending or receiving messages from neighboring PEs
is possible in Θ(1) time. See Miller and Stout [MS85] for definitions. PEs
are referred to by row and column: PE(i, j) is located in row i and column
j.

MCCs have been used to solve a variety of non-geometric problems. For
example, graph problems, like finding the bridges and articulation points of
an undirected graph or a minimum spanning tree, have been considered by
Atallah and Kosaraju [AK84]. Nassimi and Sahni [NS80] gave an algorithm
for computing the connected components of a graph with limited degree.

Many of these results use standard MCC algorithms, for example, the
implementation of a transitive closure algorithm by Van Scoy [VS80] that
allows to solve recurrences of the form

fk(i, j) = g(fk−1(i, j), fk−1(i, k), fk−2(k, j)) ∀ fn(i, j)

in time Θ(n) if g can be computed in O(1) by a single PE and f0(i, j) is ini-
tially stored in PE(i, j). Thompson and Kung [TK77] presented an algorithm
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for sorting n2 numbers in O(n) steps. Other standard algorithms include ro-
tating data within a row or column, random access read and random access
write; see Miller and Stout [MS85] for an overview.

In addition, MCCs have been used for image processing. That is, a pic-
ture of n2 pixels is distributed on the MCC: one pixel per PE. Again, our
model is equivalent to the MCC model for these problems. So, the geometry
of the input is strongly correlated to the geometry of the processor location.
Consequently, local operations on the image, such as edge detection, can be
executed by local operations on the MCC. In addition to these low-level im-
age processing tasks Miller and Stout [MS85] proposed the use of MCCs for
higher level image processing tasks. They presented Θ(n) time algorithms
for, amongst others, computing the extreme points of a convex hull, for de-
ciding whether a component is convex and for determining internal diameters
of components without holes. For their computation they use matrices, re-
peatedly rotate data, use the generalized transitive closure operation and sort
data. They describe the sort-like data movements as crucial to be able to
combine data from PE’s that are located far apart from each other. For all
these algorithm only the Θ(n)-notation is given, factors are not presented.
For most problems, the solutions do not extend to three dimensions.

Other architectures, like the pyramid or the mesh of trees, constructed
from layers of mesh-connected computers, have been studied. For example,
Schwarzkopf [Sch89] gave an algorithm to compute the discrete Voronoi dia-
gram on the mesh of trees architecture. Miller and Stout [MS88] presented
algorithms for identifying the extreme points of convex hulls of point sets for
different architectures. These architectures differ from our pixel grid layout.
To the best of our knowledge no principal component analysis algorithm has
been presented.

Object Detection. We aim at detecting and describing the (potentially
unknown) objects in a given B/W image. While we are interested in using
distributed algorithms on a field of sensors, object detection, pattern recog-
nition and object recognition (see e.g. Gonzalez and Woods [GW08]) are
well-studied, important problems. All these are in the scope of computer vi-
sion (see Ballard and Brown [BB82]), which of course also involves precedent
tasks as describing an image, and on this basis recognition, that is, recogniz-
ing local discontinuities in intensity for identifying edges and, more sophis-
ticated, segments, shape and clusters. Object, pattern, and face recognition
concentrates on certifying whether pre-defined or learned objects (patterns,
faces) or object classes are present in the given image. Object identification
deals with an even more specified task: within a given class (e.g., cars) a cer-
tain object is to be identified, see Ferencz et al. [FLMM04]. By contrast, we
want to detect an unknown object (or objects) and determine, for example,
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its center of gravity. While the task of distinguishing the object from the
background is—as we face monochrome images—not our focus of interest.

Principal Component Analysis. For the detected objects we are inter-
ested in several attributes, like centroid position and orientation. We consider
the pixels as a point set distribution in R2. Thus, these attributes can be
described by moments. For given data sets, attributes like orientation can
be determined with a Principal Component Analysis (PCA) (for an overview
on PCA see Shlens [Shl05] or Joliffe [Jol02]). This analysis is widely used
for statistical analysis of data, e.g., from neuroscience, from gene expres-
sion data (see Wall et al. [WRR03]), as well as in computer vision, for both
representation (see Gonzalez and Woods [GW08]) and image compression.

Determining the Eigenvectors of the covariance matrix and ordering these
by the related Eigenvalue (highest to lowest), gives the components in order
of significance. That is, for visualized data with coordinates the first principal
component gives the orientation.

Distributed Model. As described above, we assume the LOCAL model
of Peleg [Pel00] for the communication between pixels. In contrast to the
LOCAL model, the other two representative models defined by Peleg, the
CONGEST and the ASYNC model, focus on volume limitations and asyn-
chrony, respectively. Thus, instead of allowing for messages of arbitrary size,
as does the LOCAL model, the CONGEST model limits the message size
to O(log n). The ASYNC model assumes asynchronous communication.

Distributed Algorithms. We present a distributed sweep over the ob-
jects. If one is not aware of the special structure of the problem, a first
approach would be to use a standard distributed algorithm on the graph in-
duced by the object pixels. Thus, instead of using our algorithm we could use
any leader election or spanning tree algorithm, see Elkin [Elk06], Gallager et
al. [GHS83] and Awerbuch et al. [Awe87, ABCP96], as well as Lynch [Lyn96]
for an overview. So, this would be a distributed algorithm operating on
object pixels only (sending no messages via non-object pixels). Such a dis-
tributed in-object algorithm can not have a runtime better than Ω(WH) for
objects on a W ×H pixel image, because there exist objects with a diameter
of Ω(WH), see Figure 3.3. Our algorithm utilizes the correlation between
input geometry and network geometry, using non-object pixels as well as
object pixels. This approach yields a runtime complexity of O(W +H).

3.2 Computation of Attributes

As stated in the preceding section we intend to compute certain attributes
of an object in the image X . Let X ′ ⊆ X be an object in X . We want to



3.2. Computation of Attributes 35

compute the following attributes:

1. The size |X ′| of the object. (That is, the number of connected black
pixels forming the object, using the connectivity definition given in
Section 3.1.1.)

2. The center of gravity (µx, µy) of X ′. With (xp, yp) being the coordinates
of pixel p in some global coordinate system (that is unknown to the
pixels), we have:

µx =
1

|X ′|
∑
p∈X ′

xp , µy =
1

|X ′|
∑
p∈X ′

yp . (3.1)

3. The orientation of the object. We compute the second moments in the
form of the covariance matrix(

σ2
x σxy

σxy σ2
y

)
, (3.2)

with

σ2
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1

|X|
∑
p∈X

(xp − µx)2, (3.3)

σ2
y =

1

|X|
∑
p∈X

(yp − µy)2, (3.4)

σxy =
1

|X|
∑
p∈X

(xp − µx)(yp − µy), (3.5)

considering the pixels as a point set in R2. For this two-dimensional
point set two Principal Component Axes (orthogonal to each other)
are defined: the Eigenvectors of this matrix; see Shlens [Shl05]. The
Eigenvector corresponding to the largest Eigenvalue gives the direction
of largest variance. We use this value as the orientation of the object.

Thus, for computing the desired attributes we need to determine the
moments of the point set defined by the pixels.

If we would have some global processor with global knowledge of the
point set, we could compute these values directly. But we only have pixels
with local knowledge. Therefore we use a sweep of agents. We assign a
“weight” of 1 to each object pixel. The agents, messages sent from a pixel to
a neighboring pixel, “consume” these weights. The weight of a pixel can be
consumed only once. During the sweep we cumulate relative weights. When



36 Chapter 3. Distributed Vision with Smart Pixels

the algorithm finishes all cumulated relative weight is forwarded to a single
pixel.

So, we need to define a message type send by the pixels (messages “car-
ried” along by the agents), that give relative information and allows for the
computation of the desired attributes in the end. In fact, an agent carries
a six-tuple—an agent on a pixel (x, y) that consumed the weights for object
pixels X ⊆ X ′ carries the tuple S:

S = (m, sx, sy, sxx, syy, sxy)

= (|X|,
∑
p∈X

(x− xp),
∑
p∈X

(y − yp),
∑
p∈X

(x− xp)2,∑
p∈X

(y − yp)2,
∑
p∈X

(x− xp)(y − yp)) (3.6)

These values are relative: they are centered in the pixel that send it (and
will be adapted to be centered in the receiving pixel).

This six-tuple allows for the computation of the desired attributes and
is easily updated when passed on to an adjacent pixel—in the following we
show these and some other properties of the tuple.

Claim 1. The values in the tuple S are sufficient for the computation of the
aforementioned moments, if (x, y) is known. We assume that a centralized
processor will pick up S from the distinguished pixel per object after the al-
gorithm ended. Consequently, (x, y) can be accessed by this processor. The
centralized processor then computes the moments.

Proof. We show how the terms from Equations 3.1-3.5 can be expressed in
terms of the entries of S:
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1

|X|
∑
p∈X
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1

|X|
∑
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=
1
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m
, (3.7)
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|X|
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(y − (y − yp))

=
1

|X|(−sy + |X|y) = y − sy

|X| = y − sy

m
, (3.8)
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2
y

|X|2 )

=
1

|X|(syy −
2

|X|s
2
y +

s2
y

|X|) =
syy

|X| −
s2

y

|X|2 =
syy

m
− s2

y

m2
, (3.10)

σxy =
1

|X|
∑
p∈X

(xp − µx)(yp − µy)

=
1

|X|
∑
p∈X

(xp − x+
1

|X|sx)(yp − y +
1

|X|sy)

=
1

|X|(
∑
p∈X

(xp − x)(yp − y) +
1

|X|sy

∑
p∈X

(xp − x)

+
1

|X|sx

∑
p∈X

(yp − y) + |X| sxsy

|X|2 )

=
1

|X|(sxy −
1

|X|sysx −
1

|X|sxsy +
1

|X|sxsy)

=
sxy

|X| −
sxsy

|X|2 =
sxy

m
− sxsy

m2
, (3.11)

So, we can compute all entries of the covariance matrix (3.2). The Eigen-
vector for the larger Eigenvalue, the direction of maximum variance, can then
be easily computed by the global observer processor.
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We showed that S allows for the computation of the desired attributes.
Moreover, we are only allowed to perform simple computations with a pi-
xel. We can prove that addition and subtraction suffice for updates after an
agent’s move:

Claim 2. When an agent moves from (x, y) to an adjacent pixel, addition
and subtraction are sufficient for all necessary updates of the tuple for the
new position.

(i) When moving a tuple (m, sx, sy, sxx, syy, sxy) to the east, (m, sx+m, sy, sxx+
2sx +m, syy, sxy + sy) is the correct tuple for the new position.

(ii) When moving a tuple (m, sx, sy, sxx, syy, sxy) to the west, (m, sx−m, sy, sxx−
2sx +m, syy, sxy − sy) is the correct tuple for the new position.

(iii) When moving a tuple (m, sx, sy, sxx, syy, sxy) to the north, (m, sx, sy +
m, sxx, syy + 2sy +m, sxy + sx) is the correct tuple for the new position.

(iv) When moving a tuple (m, sx, sy, sxx, syy, sxy) to the south, (m, sx, sy −
m, sxx, syy− 2sy +m, sxy− sx) is the correct tuple for the new position.

Proof. We consider the different updates

(i) Assume that pixel (x, y) gets a message S = (m, sx, sy, sxx, syy, sxy)
from the left, i.e., from (x − 1, y). The receiver has to compute the
following values to ensure the properties of the tuple:

s′x =
∑
p∈X

(x− xp) =
∑
p∈X

(x− 1− xp) +
∑
p∈X

1

= sx +m ,

s′y =
∑
p∈X

(y − yp) = sy ,

s′xx =
∑
p∈X

(x− xp)2 =
∑
p∈X

((x− 1− xp) + 1)2

=
∑
p∈X

(x− 1− xp)2 + 2
∑
p∈X

(x− 1− xp) +
∑
p∈X

1

= sxx + 2sx +m ,

s′yy =
∑
p∈X

(y − yp)2 = syy ,

s′xy =
∑
p∈X

(x− xp)(y − yp) =
∑
p∈X

(x− 1− xp + 1)(y − yp)

=
∑
p∈X

(x− 1− xp)(y − yp) +
∑
p∈X

(y − yp)

= sxy + sy .
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(ii) Assume that pixel (x, y) gets a message S = (m, sx, sy, sxx, syy, sxy)
from the right, i.e., from (x+ 1, y). The feasible values for the receiver
are:

s′x =
∑
p∈X

(x− xp) =
∑
p∈X

(x+ 1− xp)−
∑
p∈X

1

= sx −m ,

s′y =
∑
p∈X

(y − yp) = sy ,

s′xx =
∑
p∈X

(x− xp)2 =
∑
p∈X

((x+ 1− xp)− 1)2

=
∑
p∈X

(x+ 1− xp)2 − 2
∑
p∈X

(x+ 1− xp) +
∑
p∈X

1

= sxx − 2sx +m ,

s′yy =
∑
p∈X

(y − yp)2 = syy ,

s′xy =
∑
p∈X

(x− xp)(y − yp) =
∑
p∈X

(x+ 1− xp − 1)(y − yp)

=
∑
p∈X

(x+ 1− xp)(y − yp)−
∑
p∈X

(y − yp)

= sxy − sy .

(iii) Assume that pixel (x, y) gets a message S = (m, sx, sy, sxx, syy, sxy)
from below, i.e., from (x, y − 1). The receiver computes the following
values:

s′x =
∑
p∈X

(x− xp) = sx ,

s′y =
∑
p∈X

(y − yp) =
∑
p∈X

(y − 1− yp) +
∑
p∈X

1

= sy +m ,

s′xx =
∑
p∈X

(x− xp)2 = sxx ,

s′yy =
∑
p∈X

(y − yp)2 =
∑
p∈X

((y − 1− yp) + 1)2

=
∑
p∈X

(y − 1− yp)2 + 2
∑
p∈X

(y − 1− yp) +
∑
p∈X

1

= syy + 2sy +m ,
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s′xy =
∑
p∈X

(x− xp)(y − yp) =
∑
p∈X

(x− xp)(y − 1− yp + 1)

=
∑
p∈X

(x− xp)(y − 1− yp) +
∑
p∈X

(x− xp)

= sxy + sx .

(iv) Assume that pixel (x, y) gets a message S = (m, sx, sy, sxx, syy, sxy)
from above, i.e., from (x, y + 1). The receiver computes the following
values:

s′x =
∑
p∈X

(x− xp) = sx ,

s′y =
∑
p∈X

(y − yp) =
∑
p∈X

(y + 1− yp)−
∑
p∈X

1

= sy −m ,

s′xx =
∑
p∈X

(x− xp)2 = sxx ,

s′yy =
∑
p∈X

(y − yp)2 =
∑
p∈X

((y + 1− yp)− 1)2

=
∑
p∈X

(y + 1− yp)2 − 2
∑
p∈X

(y + 1− yp) +
∑
p∈X

1

= syy − 2sy +m ,

s′xy =
∑
p∈X

(x− xp)(y − yp) =
∑
p∈X

(x− xp)(y + 1− yp − 1)

=
∑
p∈X

(x− xp)(y + 1− yp)−
∑
p∈X

(x− xp)

= sxy − sx .

Only basic arithmetic operations, that is, addition and subtraction, are
used for the updates.

Claim 3. For a pixel field of size 2k × 2k we need at most 20k + 11 bits for
a tuple.

Proof. Let us consider a pixel field of size 2k × 2k. Obviously, we have m ≤
2k × 2k. Consequently, we need at most 2k + 1 bits for m. Furthermore,

|sx| ≤ 2k
∑2k

i=1 i ≤ 23k (analogue for sy), thus, we need at most 3k + 2
for the second and third entry in the tuple (in each case one bit for the
sign and 3k + 1 for the value). For the last three entries we can give an
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upper bound of 2k
∑2k

i=1 i
2 ≤ 24k, resulting in an upper bound of 4k + 2

on the number of bits used for these entries. Altogether, we need at most
2k + 1 + 2(3k + 2) + 3(4k + 2) = 20k + 11 bits for a tuple.

So far we considered the necessary updates when an agent moves. We still
need to make sure that after the necessary updates described in the proof of
Claim 2, weight from the new pixel is consumed, if it is still available.

Claim 4. If an agent picks up the weight of the pixel it currently resides on,
it simply has to increment the first tuple entry.

Proof. For a pixel p whose weight has not yet been consumed, we have p ∈ X.
After the updates of the other tuple entries m = |X\p| = |X| − 1. Hence,
incrementing the first tuple entry yields |X|.
Claim 5. In case six-tuples arrive from different directions, we simply add
them component-wise. If an agent receives the cumulative weight of another
agent on the same pixel, it just computes the component-wise sum of the two
tuples.

Proof. Assume, e.g., that pixel (x, y) gets a message from below, i.e., from
(x, y− 1), and a message from above, i.e., from (x, y+ 1). The message from
(x, y−1) and from (x, y+1) refers to an agent that consumed the weights for
object pixels X1 ⊆ X ′ and X2 ⊆ X ′, respectively. Hence, we may simply split
the sums over all p ∈ X into sums over all p ∈ X1 and over all p ∈ X2.

In order to clarify these computations we have a look at the example
of Figure 3.6. The left side depicts the pixel image, on the right side the
cumulation of relative weights is shown. After the sweep has stopped, the
centralized processor collects the tuple (6, 7,−5, 11, 9,−7) from the pixel at
(32, 2). Using (3.7) to (3.11), the processor computes the following values:

µx = x− sx

m
= 30 +

5

6
,

µy = y − sy

m
= 2 +

5

6
,

σ2
x =

sxx

m
− s2

x

m2
=

17

36
,

σ2
y =

syy

m
− s2

y

m2
=

29

36
,

σxy =
sxy

m
− sxsy

m2
=
−7

36
.

Thus, the center is located at (30+ 5
6
, 2+ 5

6
). The resulting covariance matrix

is
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2

3

4

30 31 32

2

3

4

30 31 32

+

(6, 7,−5, 11, 9,−7)
(5, 2,−5, 2, 9,−2)

(1, 1, 0, 1, 0, 0)(1, 0, 0, 0, 0, 0)

(4, 1,−5, 1, 9,−2)

(3, 1,−2, 1, 2,−1)

(2, 1, 0, 1, 0, 0)(1, 0, 0, 0, 0, 0)

Figure 3.6: Example for the scheme to accumulate relative weights. The yellow stars
indicate the consumed weights of the pixels.

 17
36

−7
36

−7
36

29
36

 .

The Eigenvector for the largest Eigenvalue is

(
29

7
+

1

7
(−23−

√
85), 1) ≈ (−0.459935, 1),

giving the direction of maximum variance, the orientation.
Now, the only task we are left with is to define a rule set for the sweep.

This rule set must describe how the agents sweep over the objects, how they
consume the pixel weights and then let the weights for each object accumulate
in a single pixel. We will describe this rule set in the next section.

3.3 Our Algorithm

We give a rule set describing an agents sweep over the objects. In order to do
so, we will first give some definitions for these agents in Section 3.3.1. We give
the general idea for the sweep and the rule set in the following Section 3.3.2
and end the algorithm’s description with a note on its implementation.
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3.3.1 Agents

We let A denote the set of all agents. Aside from the six variables for com-
puting the moments, described in Section 3.2, an agent a ∈ A has two more
variables:

1. Ca ⊆ A. This denotes the set of partner agents.

2. ha. This boolean variable indicates whether the agent a has ever moved
onto a non-object pixel.

Partner agents belong to the same object as a, that is, they started in the
same object, and reside in an adjacent row (within L∞-distance of 1). Once
established, partnerships will never be broken. To assure this, partner agents
move together, maintaining an L∞-distance of at most 1, waiting for each
other if necessary. Initially, an agent has no partners, so, we start with Ca =
∅ for all agents. Whenever an agent a decides to add a′ to its set of partners,
a′ will also decide to add a; that is, partnership is mutual. Consequently,
we may consider an established partnership between two agents to be an
undirected edge connecting the two agents. With the agents as vertices we
may, thus, consider partnership as an undirected graph on the set of agents.
We denote this graph by C = (A,C). Using these partnerships allows us to
deal with interwoven objects: Information is exchanged with partners only,
so even if agents originating from different objects occupy the same pixel, we
will never mix the information, since such agents never become partners.

The boolean variable ha indicates whether the agent a has ever moved on
a non-object pixel and, hence, left the object it started in, its “home” object.
Initially, we set ha to false for all agents (which are only created on object
pixels). Once the agent a leaves its home object and moves to a non-object
pixel, it sets ha to true.

Having defined the variables used by an agent, we consider the informa-
tion available to an agent. Let A(p) ⊆ A denote the set of all agents currently
located on a pixel p. We assume that each agent a residing on a pixel p knows

• Which pixels q ∈ Γ(p) are object pixels

• If the weight of p has already been consumed

• The variables Ca′ and ha′ for all a′ ∈ ∪q∈Γ(p)A(q).

We show how an agent may actually access this information on a smart pixel
grid in Section 3.3.2.
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3.3.2 Algorithm

Basic Idea. Before we give the formal rule set, we have a look at its
basic ideas. We start with agents at the left boundary of objects (that is,
initially there is an agent on every pixel that has a non-object pixel to its
left). The agents establish partnerships with agents from the same home
object. These chains of partner agents sweep over the object, from the left
object boundary to the point when they reach a vertical line at the object’s
rightmost coordinate. Once established, partnerships will never be broken
again. During this sweep the weight assigned to object pixels is collected
by agents that never left their home object. These collected weights are
treated as the six-tuple S described in Section 3.2. Since we intend to have
a single pixel with all information on the moment computation, we forward
the cumulative weight downward, such that in the final vertical line the
bottommost agent carries the desired information. How do we assure the
realization of this general idea?

Initialization. Agents are initialized on every object pixel that has a
non-object pixel to its left; see Figure 3.7. Those agents did not yet leave
their home object and did not establish any partnership (i.e., we start with
ha = false and Ca = ∅ for all agents a). The algorithm then runs in iterations,
with all agents performing the same steps in each iteration.

Partners. The sweep proceeds from left to right, so in each iteration
an agent looks for potential partners in vertical direction, that is, in adjacent
rows. If there is an agent on a pixel in the accessible neighborhood Γ(p) and
in the same column as p with a y-coordinate different from p’s, that never
left its home object, a partnership is established. Selection of agents that are
still in their home object assures the ability to cope with interwoven objects,
as described in Section 3.3.1.

Weight Consumption and Forwarding. In each iteration agents that
did not leave their home object consume a pixel’s weight, in case it is still
available. The downward forwarding of cumulative weight translates to an
agent forwarding all collected cumulative weight that it currently carries to
a partner agent in the row below, if such an agent exists (in each iteration,
again).

Merging of Agents. Starting with agents at the left object boundary,
we may have different agents belonging to the same object in a single row—
think of a ∩-like object. Those will not become partners—one of the agents
must have left its home object when it “meets” the other, and partner agents
are searched for in adjacent rows (not the same row) only. Still, we want to
merge agents in one row that belong to the same object. We use their partner
agents here: If two agents a and a′ on a pixel p have a common partner a∗,
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Figure 3.7: Example for an object: agents are located on every object pixel that has
no object pixel to its left. The pink color indicates ha = false. Every object pixel has a
weight of 1, depicted by the yellow stars.

a and a∗ as well as a′ and a∗ belong to the same object. Hence, a and a′

may conclude that they have the same home object and decide to merge into
a new agent a′′. A merge includes an update of ha′′ and Ca′′ . Only if both
agents already left their home object the new agent a′′ is no longer allowed
to collect weight and establish partnerships. In case either a or a′ never left
their object, the new agents inherits this status: ha′′ = ha ∧ ha′ . Moreover,
we simply merge the set of partners.

Movement. The description above did not contain any movement, we
intend to give a rule set for a sweep, hence, we need to clarify when an agent
is allowed to move to the right (that is from p to E(p)). We do so in naming all
cases that prevent an agent from being allowed to move. We demanded that,
once established, a partnership should never be broken again. Thus, if an
agent a (on p) has a partner agent a′ in the pixel to the north-west (NW(p))
or to the south-west (SW(p)) it is not allowed to move. In case it would
transfer itself to E(p) and a′ does not move in this iteration, the L∞-distance
between the two agents would become larger than 1. Moreover, agents with
an object pixel to the south (S(p)) that did not yet find a partner on S(p)
do not move. They “wait” for an agent to arrive at this point of connection.
The same happens for an object pixel to the north. The final condition that
prevents an agent from moving applies to agents that have a non-object pixel
to the right. In case there is no partner agent on either NE(p) or SE(p), which
would “drag” the agent further to the right, the agent is not allowed to move
to this non-object pixel. We will prove in Section 3.4.1 that this assures the
vertical line at the largest x-coordinate of the object.
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We now give the technical description of what we described above. Ini-
tially, an agent a is located on every object pixel that has no object pixel to
its left. For each agent we have ha = false and Ca = ∅ (as it has not left its
home object and not established any partnerships), see Figure 3.7.

The algorithm runs in iterations. The algorithm’s steps are performed in
sync by all agents in each iteration. We give the steps for agent a on pixel p
(Figure 3.8 shows examples for the steps) in Algorithm 3.1.

A stopping criterion is not integrated in our algorithm. Yet, the algorithm
stops. The algorithm ends in the first iteration in which no agent either

• Passes on cumulative weight in step 3

• Decides to move in step 5

The agents itself are not aware that the algorithm ended, as they only know
whether they self performed any of these steps. For the application we may
simply assume that a centralized processor waits for 2W + 2H—upon which,
as we will prove in Section 3.4.2, the algorithm terminated.

Examples for this algorithm are shown in Figures 3.9 to 3.13, Figure 3.14
and Figure 3.15. In Figures 3.9 to 3.13 the focus is on the details, while
Figure 3.14 and Figure 3.15 lay the stress on the overall picture. Here, the
collection of weights is not shown. In iteration #1, the agents are located on
left-most object pixels. In the end the agents for each object build a vertical
line. All cumulated weight for this object is carried by the bottommost
agent and can be picked up. New partnerships are established, for example,
in iteration #3 and #6 (Step 2). A merge can be observed in iteration #9:
The two agents in the row second to the bottom have a common partner,
in the bottommost row, and decide to merge when they are located on the
same pixel. The new agent is still in its home object, the collected weights
are simply merged. The agents only merge when they know that they belong
to the same object. Thus, the chains for the different objects can cross each
other without any interference in iterations #6 to #14. In addition, the
different waiting rules can be observed. The uppermost agent of the vertical
line of the“T”waits due to Rule 5d: there is a non-object pixel to the east and
no agent in the north-east or south-east, this waiting condition is resolved
in iteration #5. Rule 5a applies, e.g., for the bottommost agent in iteration
#2. In the end the collected weight for the “T” and the “U” can be picked
up from the bottommost pixels of the respective agent chains, as shown in
Figure 3.13.

Figure 3.14 and Figure 3.15 show that agents move fast while they are
on object pixels. After leaving an object, they have to be “dragged” accord-
ing to Rule 5d by partner agents, see for example iterations #14 and #15.
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Algorithm 3.1: Smart Pixels Sweep

1. Consume weight:
If ha = false and the weight on the pixel p has not been consumed yet,
consume it (as described in Section 3.2), see Figure 3.8(1.).

2. Find partners:
If ha = false, find out if there are any agents
a′ ∈ ∪p′∈Γ(p):yp′ 6=yp&xp=xp′

A(p′) (i.e., on neighbor pixels in adjacent rows),
which also have ha′ = false (i.e., which also never left their home object).
Add those to Ca, i.e., establish a partnership with a′. See Figure 3.8(2.).

3. Pass on cumulative weights:
If there is an agent a′ ∈ Ca′ in the row below p, pass all collected moment
weight to a′. Ties are broken arbitrarily. See Figure 3.8(3.).

4. Merge agents:
If there is another agent a′ ∈ A(p) (i.e., on the same pixel as a), and a
and a′ have a common partner, they conclude they belong to the same
object (as partnership is mutual). Then, they merge into a new agent a′′

with ha′′ = ha ∧ ha′ and Ca′′ = Ca ∪ Ca′ . This is done as a shrinking of
{a, a′} in C, with the obvious consequences for the partner edges incident
to them. The agents also merge the accumulated weights (see
Section 3.2). See Figure 3.8(4.).

5. Decide whether to stay or go:
The agent decides to move forward, unless any of these conditions holds:

(a) Ca ∩ A(NW(p)) 6= ∅ or Ca ∩ A(SW(p)) 6= ∅ (i.e., it has a
partner in the column to the left and could lose its partner by
moving in case the partner will not move), see Figure 3.8(5.a), for
the case of Ca ∩ A(NW(p)) 6= ∅,

(b) S(p) ∈ X , but Ca ∩ A(S(p) ∪ SW(p) ∪ SE(p)) = ∅ (i.e., there is
an object pixel in the south, but no partner has been found on it
yet), see Figure 3.8(5.b), or

(c) N(p) ∈ X , but Ca ∩ A(N(p) ∪ NW(p) ∪ NE(p)) = ∅ (analog to
(b), here for the north).

(d) E(p) /∈ X and Ca ∩ A(NE(p)) = Ca ∩ A(SE(p)) = ∅ (i.e., it will
not move onto the non-object pixel to the east until it gets
dragged there by partner agents), see Figure 3.8(5.d).

6. Stay or go:
If a decided to move in step 5, it now transfers itself to E(p). If E(p) /∈ X ,
it sets ha ← true (as it is no longer in its home object).
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(1.)
(2.)

(3.) (4.)

WAIT

(5.a)

WAIT

(5.b)

WAIT

(5.d)

Figure 3.8: Examples for the steps in the algorithm. Agents that never left their home
object are shown in pink, agents with ha = true in turquoise. Yellow stars indicate pixel
weight, they are drawn pale if the pixel’s weight has already been consumed. The numbers
refer to the steps in the algorithm.
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Figure 3.9: Example for algorithm 3.1. The pink color of the agents boundary indicates
ha = false, ha = true is indicated in turquoise. Yellow stars indicate pixel weight; they
are drawn pale if the pixel’s weight has already been consumed. For clarity reasons the
consumed weight is not forwarded during the run of the algorithm; these steps are united
in the last picture. An agent labeled with a W has to wait in the current round.
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Figure 3.10: Example of Figure 3.9 continued. The pink color of the agents boundary
indicates ha = false, ha = true is indicated in turquoise. Yellow stars indicate pixel weight;
they are drawn pale if the pixel’s weight has already been consumed. For clarity reasons
the consumed weight is not forwarded during the run of the algorithm; these steps are
united in the last picture. An agent labeled with a W has to wait in the current round.
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Figure 3.11: Example of Figure 3.9 continued. The pink color of the agents boundary
indicates ha = false, ha = true is indicated in turquoise. Yellow stars indicate pixel weight;
they are drawn pale if the pixel’s weight has already been consumed. For clarity reasons
the consumed weight is not forwarded during the run of the algorithm; these steps are
united in the last picture. An agent labeled with a W has to wait in the current round.
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Figure 3.12: Example of Figure 3.9 continued. The pink color of the agents boundary
indicates ha = false, ha = true is indicated in turquoise. Yellow stars indicate pixel weight;
they are drawn pale if the pixel’s weight has already been consumed. For clarity reasons
the consumed weight is not forwarded during the run of the algorithm; these steps are
united in the last picture. An agent labeled with a W has to wait in the current round.
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Figure 3.13: Example of Figure 3.9 continued. The pink color of the agents boundary
indicates ha = false, ha = true is indicated in turquoise. Yellow stars indicate pixel weight,
they are drawn pale if the pixel’s weight has already been consumed. For clarity reasons
the consumed weight is not forwarded during the run of the algorithm, these steps are
united in this last picture, after the algorithms actual run. An agent labeled with a W
has to wait in the current round.

Agents waiting for other agents to arrive—due to Rule 5b/c—may result in
agents standing in lines of slope 1, as in the right tower in iteration #15.
Again, agents only merge when they know that they belong to the same ob-
ject (#38/#39). Hence, the chains for different objects can cross without
interfering with each other (#173). In the end, we can observe a a vertical
line for each object. Again, the collected weight can be picked up from the
bottommost pixel of each vertical line.

Three-dimensional Objects and Grids. Note that our algorithm can
easily be extended to cope with three-dimensional objects and pixel grids:
We simply consider the 26 direct neighbors, for a sweep running along the
y-axis, partners are searched for in adjacent pixels in the same columns along
the x- and z-axis, respectively. Weight is passed on two partners that are
below a pixels p according either to the x- or the z-direction (ties breaking
arbitrarily), and so on. A plane of agents comprises the sweep, rather than
a chain of agents for the two-dimensional case.
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#1
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#15

#21

#38

Figure 3.14: Another example for algorithm 3.1. Agents are shown in black, objects
in grey. Pixels whose weight has already been consumed are colored. The color refers to
the chain of partnership agents that carries this weight. Whenever new partnerships are
established, the colors are also merged.
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Figure 3.15: Example of Figure 3.14 continued.



56 Chapter 3. Distributed Vision with Smart Pixels

Implementation on active pixels. After describing the algorithm we
have a brief look at its implementation on a smart pixel grid. Each pixel
maintains a list of the agents that are located on it. The pixel computes
the decisions for all these agents. A synchronization with neighbor pixels is
only necessary after Step 4 and Step 6. As these steps alter the variables we
assumed to be known for agents in the 8-neighborhood. The other four steps
are based on already available information only. For Step 1 no information
about other pixels is necessary. The variables Ca and ha have not been
updated in Step 1, thus Step 2 can be performed without any synchronization
with p’s neighbors. Step 3 simply requires to send a message to corresponding
partners, that is, to a neighbor pixel. Again, the decision in Step 5 is based
on the already available knowledge of positions of partner agents.

3.4 Analysis of the Algorithm

We start this section with proving the correctness of the algorithm. In par-
ticular, the algorithm is able to distinguish interwoven objects. Thereafter,
we analyze the runtime complexity of our algorithm. We will then analyze
the number of agents that may be located on a single pixel at the same time.
Finally, we have a brief look at the algorithms applicability.

3.4.1 Correctness

Theorem 1 (Correctness). When the algorithm stops, the weight of all pixels
belonging to the same object is accumulated in a single agent. The agents for
this object form a vertical line.

Proof. As a first step we consider the establishment of partnerships. Initially,
Ca = ∅ ∀a ∈ A, that is, no partnerships have formed. An agent a decides
on a new partner a′ in Step 2 only if both are still in the object they started
in—and never left it. Moreover, only agents with a common partner merge
in Step 4. In addition, Step 5, conditions (b) and (c), make sure that agents
never move until they have found partners in both adjacent rows if needed,
that is, in case the adjacent pixels are object pixels. Consequently, agents
that were created in different objects will never influence on each other.

So, we only need to consider agents belonging to one object. We consider
a point in time when these agents do not form a vertical line. All agents in
the left-most column have found their partners now. Thus, either one agent
has an object pixel in E(p), and he will move. Or there is an agent with a
partner to the right (i.e., in NE(p) or SE(p)), and this agent will move.

Consequently, in the end all agents for the object form a vertical line.
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In case they did not yet establish partnerships, they will now partner.
Resulting in a line fully connected by partnership relations. The agents pass
all weight of the object pixels down to the bottom-most agent (Step 3).

3.4.2 Runtime Complexity

We proved that agents from different objects never influence each other.
Hence, we can restrict the analysis to the case of a single object X . We assume
W×H to be the size of the smallest axis-parallel box that contains X . For the
proof of the runtime bound we look at objects with increasing complexity. We
start our proof with paths, i.e., objects where each occupied pixel has at most
two neighboring object pixels. On a pixel grid we may describe these paths by
alternating vertical and horizontal lines. We denote the length of the vertical
and horizontal parts by Hi + 1 (height) and Wi + 1 (width). We associate
a positive sign with a downwards vertical and a rightwards horizontal line.
The path is (H1,W1, H2,W2, . . . , HV ,WV ). To be precise, we start with a
single pixel. To it, we attach |H1| pixels downwards (if H1 > 0) or upwards
(H1 < 0). Then we attach |W1| pixels to the path’s end, horizontally to the
right (W1 > 0) or left (W1 < 0). We repeat this process for H2, W2, . . . , HV ,
WV .

We focus on the movement of the agents in this subsection. Thus, the
weights of the pixels are not shown in the figures. Only the agents and
partnership relations are shown (we do not distinguish different states of the
agents by color).

Theorem 2 (L-shaped paths). Let X be an L-shaped path (H1,W1); see Fig-
ure 3.16. The agent on the horizontal line moves with speed 1/2, it takes
additional time of H to gain a vertical line at the rightmost end.

Proof. We have H1 + 1 = H,W1 + 1 = W . Let ab be the agent initially
located at the bend of the L, see Figure 3.16. Let the others be a1, . . . , ak
(named starting from the agent initially located above ab). All agents create
partnership edges, i.e., ab ∈ Ca1 , a1 ∈ Ca2 , . . . , ak−1 ∈ Cak . In the first
iteration ab has no partner to the left, a partner above and no object below
and in moving to the right ab will neither be away from its home object nor
exceed an L∞-distance of 1 to a1. Thus, ab moves in the first iteration. The
others do not move, as they would be leaving their home object and have no
partners in NE(p) or SE(p) (see Rule 5d). In the second iteration ab has to
wait as its partner a1 is to the left (NW(p)). With ab being in SE(p) for a1,
a1 is allowed to go now. The other ai’s still wait. So, in the third iteration
ab is again allowed to move, as is a2 (with a1 in SE(p)), all other agents wait.
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(#1) (#9) (#10)

(#11) (#12) (#27)

Figure 3.16: An L-shaped path and the algorithm sweeping over it. (H1 = 9,W1 = 9.)

This process goes on, ab moves in every second iteration, i.e., with speed
1/2, and the other pixels form a rearwards line with slope 2 (at any point
in time two agents occupy pixels in the same column). Thus, ab reaches the
right end after 2W − 1 time units. As all the other agents are also moving
with speed 1/2 it takes additional H − 1 time units until the vertical line at
the right end is reached.

Corollary 1. Theorem 2 holds for an L-shaped path reflected along the x-
axis.

Theorem 3 (Windy paths with uniform height). Let X be an x-monotone
path with Wi > 0,∀i, |Hi| + 1 = H,∀i, and alternating signs of the Hi’s,
see Figure 3.17. It takes at most 2W + H iterations to build up the right
vertical line.

Proof. By induction on the number of vertical lines, V .
The case V = 1 is covered by Theorem 2. Assuming the theorem is correct
for V , we now show that it also holds for V + 1:
X can be covered by overlapping L-shaped paths, (H1,W1), (H2,W2), . . . ,

(HV+1,WV+1). Agents located in a pixel above or below such an overlap
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Figure 3.17: A windy path with all vertical lines of same height. (|Hi| = 8 ∀i,W1 =
4,W2 = 2,W3 = 6,W4 = 10,W5 = 2,W6 = 3 and W7 = 4.)

have to wait for an agent to arrive from the left before they can move, due to
Rules 5b and 5c. If the waiting time is long enough (2H − 4) this results in
agents standing in a line with slope 1 (see Figure 3.18). Whenever the agents
from the left arrive, these lines of merged agents are allowed to move and do
so with speed 1/2 (as there is always one agent located on a horizontal line,
allowed to go whenever its partner caught up, thereby dragging the rest).

Now let us consider the situation in the first piece (H1,W1). No agent
initially located on the vertical line added at the left has to wait for some
agents approaching from the left. Thus, the agent initially located at the
bend of the L, see Theorem 2, walks with speed 1/2 towards the next vertical
line (arriving at iteration 2W1 − 1). The agents from the first vertical line
approach the second in a line of slope 2, after iteration 2W1 − 1, as seen by
the following two cases:

1. W1 < (H−1)/2: Some agents are still located on the first vertical line.
When the first agent reaches the second vertical line the agent with
which it will merge is not yet allowed to move, see the #5 in Figure
3.19. The slants move (horizontally) through the L-shaped parts, as
seen in #6 to #9 of Figure 3.19.

(#5) (#6) (#8) (#10)

Figure 3.18: Agents initially located on an L-shaped path with a waiting agent form a
line of slope at least 1.
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(#5) (#6)

(#7) (#8)

(#9)

Figure 3.19: Case W1 < (H − 1)/2 in the proof of Theorem 3. (W1 = 3, H = 10.)

At some point the merged agents are allowed to move. This happens
after H1 iterations. Thus, now all agents of the first vertical line keep
on moving until they reach the right-most line. And, finally, a time of
H− (H1−2W1) is needed to gain the vertical line. Thus, altogether we
have H1 + 2(WV − 1) +H − (H1− 2W1) ≤ 2WV +H + 2W1 = 2W +H
iterations.

2. W1 ≥ (H − 1)/2: It may take additional time of H− ≤ H until
the merged agents are allowed to move. The agents keep on mov-
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(X )

;

(X ′)

Figure 3.20: Windy path X and reduction X ′ to the previous case.

ing, collecting (by merging) all the others (time 2WV ) and finally
a time is needed to gain the vertical line. For H− = 0 we have:
2W1 − 1 + 2WV + H ≤ 2WV+1 + H = 2W + H. For a positive H−,
we do not need an additional time of H to gain the vertical line, but
(H −max{H−, H −H−} − 1). Consequently, for:

• H− > H−H− we need 2W1−1+H−+2(WV−1)+(H−(H−−1)) ≤
2WV+1 +H = 2W +H iterations, and for

• H− ≤ H −H−(⇔ 2H− ≤ H) we need 2W1 − 1 + H− + 2(WV −
1) + (H − (H −H−)− 1) ≤ 2WV+1 + 2H− ≤ 2W +H iterations.

Theorem 4 (Windy paths of arbitrary height). Let X be an x-monotone
path with Wi > 0 ∀i and alternating signs of the Hi’s, see Figure 3.20. It
takes at most 2W +H iterations to build up the right vertical line.

Proof. To prove the runtime we modify the object X , and show that our
algorithm is not faster on the modified object X ′, yet still runs in at most
2W +H on X ′.

The object X ′ consists of all vertical lines of X extended to the length of
H and the horizontal lines shifted to the lowest respectively highest position
in the bounding box, see Figure 3.20. We claim that our algorithm is not
faster on X ′ than on X . Then, the claimed runtime of 2W +H results from
Theorem 3. We prove the claim in three steps:

Claim 1: The time the agents need to reach the second vertical line from
the first does only depend on W1. The agents starting from the first vertical
line need not wait for agents approaching from the left. Theorem 2 shows
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that the first agent reaches the next vertical line after 2W1 − 1, independent
on the height H1.

Claim 2: For agents initially located on vertical lines other than the first
an increased Hi may cause some agents to be able to move further to the
right. Nevertheless, at least one agent stays on the line and is not picked up
earlier. The first part follows from the fact that a bigger Hi, determining the
“leash length” of the agent moving on the horizontal line (with the waiting
pixel located above or below an overlap of L-shaped parts holding the leash),
gives this moving agent more freedom. The other agent still has to wait (see
Figure 3.18).

As the agents of the first vertical line keep on moving with speed 1/2 it is
picked up “in time” (and when moving to the right a line with slope at least
2 is reestablished).

Claim 3: For a smaller height, Hi, the merging point enabling the agents
initially located on the next vertical line to move, is not reached later. That
is, with a bigger Hi the waiting Rule 5d is not resolved earlier. We need to
distinguish two cases:

• In case the first vertical line is longer than (or equal to) the second
(|Hi| ≥ |Hi+1|), the time until merged agents are allowed to move
depends on the height: the slant moves (horizontally) through the L-
shaped parts—this takes longer for a bigger height.

• In case the first vertical line is shorter than the second (|Hi| < |Hi+1|),
the “new” agents added parallel to agents from the (i + 1)th vertical
line may overstep the second vertical line before some agents initially
located in the second vertical line are enabled to move. Nevertheless,
the pulling agent is still one of the second vertical line and consequently
not to the left of the“new”ones. The slant keeps on moving horizontally
through the L-shaped path, enabling the agents of the two vertical lines
to move at the same time as in X .

Theorem 5 (X-monotone paths). Let X be an X-monotone path with
Wi > 0, ∀i, see Figure 3.21. It takes at most time 2W + H to build up the
right vertical line.

Proof. Again, we construct an object X ′ and show that the algorithm is not
faster on X ′ than on X . Consider the sign of the vertical lines (i.e., whether
the next horizontal line is situated below or above the last one). Swing out
all stairs with a row of vertical lines of the same sign, see Figure 3.21. Hence,
X ′ is an object of the type considered in Theorem 4, and the running time
is at most 2W +H.
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(X )

;

(X ′)

Figure 3.21: X-monotone path X and its reduction X ′.

We claim that merged agents are not allowed to move earlier on X ′. Let
the vertical lines of the first staircase be `1, . . . , `r, from left to right. We
compare it to the corresponding L-shaped path (with height (

∑r
i=1 Hi) + 1

and width (
∑r

i=1Wi) + 1).
When the agents of X ′ gain a line of slope 2 for the first time, the agents

from `1, . . . , `r are at most in lines with slope 2 (as they are shorter), some
agents may have gone further to the right, resulting in lines with slopes not
less than 1.

The agents of `1 reach the merge point after 2W`1−1. At this time we have
a parallel line in X ′ with all agents to the left of the ones from `1, . . . , `r.

Theorem 6 (Arbitrary paths). Let X be a path, see Figure 3.22. It takes at
most 2W +H iterations to build up the right vertical line.

Proof. We construct a set X ′1, . . . ,X ′z of objects (paths) by splitting the ver-
tical lines of X at the rightmost position of the bounding box, if these lines
exist, and projecting the maximal height H to the left of each part. Note that
this may result in circles. Then, we take the longest of the paths X ′1, . . . ,X ′z
(in terms of time), let this path with the projection on the left be X ′. We

(X ) (X ′1) (X ′2)

Figure 3.22: Arbitrary path X being transformed into simpler pieces X ′1 and X ′2.
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(X ) (GX ) (TX )

Figure 3.23: Reducing the general case to analyzing the most complex subpath.

claim that X ′ is not processed faster than X . We prove the claim in two
steps:

Claim 1: The height stays the same. Obvious, as we projected the maxi-
mal height to the left of each part, in particular to the left of X ′.

Claim 2: The new created agents will not pick up agents to the right
earlier than these will be enabled to move in X . We add a vertical line, i.e.,
the agents have to be pulled by an agent (or more) on an existing horizontal
line. This agent keeps its speed and is never to the left of the added agents
before they potentially merge with “old” agents: When they merge with “old”
agents the merged agents inherit the conditions for both.

Hence, if they had to wait they still do, but as waiting for agents from
the left they will be enabled to move.

Thus, the new added agents on the first (leftmost) vertical line will not
influence on the time “old” agents from the leftmost end need to reach the
right most end (2W +H∗, H∗ ≤ H). They are at least pulled and may then
build a vertical line (time H − H∗), resulting in running time of at most
2W +H.

Theorem 7 (General case). Let X be the given object. The running time of
the algorithm is at most 2W +H.

Proof. We may consider X as a graph GX : X occupies pixels, the nodes, and
neighboring (4-neighborhood) pixels are adjacent, see Figure 3.23. We prove
the running time in four steps:

Claim 1: Walking inside an object is faster than walking outside of an
object. Obviously, as outside of an object movement is further restricted by
Rule 5d.

Claim 2: Reducing GX to its leftmost edges whenever vertical edges are
parallel (and deleting the horizontal edges in these areas, preserving connect-
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Figure 3.24: Worst-case on agents per pixel.

ing edges) we gain a tree, TX . Obviously, as the construction does not leave
any cycles.

Claim 3: The algorithm does not run faster on TX than on GX . Results
from (1) and (2).

Claim 4: The running time on TX is at most 2W +H. In TX we consider
all paths that end on the right. Then, we take the longest (in terms of time)
of these, let it be P (decide on P from left to right at branching points).

Analogously to the proceeding in the proof of Theorem 6 we project the
maximal height H to the left of P .

We do not shorten the running time of “old” agents on P from the left to
the right. Arguments like in the proof of Theorem 6 yield the 2W +H.

3.4.3 Agents per Pixel

A pixel p stores all agents (with corresponding variables) that are currently
located on p. The pixel performs the computations and communication for
all of the agents stored on it.

As described in Section 3.1 we assume the LOCALmodel of Peleg [Pel00],
in which a pixel may perform all computations and communication for all
agents that currently reside on it in a single communication round.

Figure 3.24 gives a worst-case example for the number of agents per pixel
for our algorithm. We can enlarge this example, yielding pixels with Ω(W )
agents stored on it at the same time. As agents only move horizontally and
agents will initially never be located on horizontally adjacent pixels (we only
generate agents on object pixels with a non-object left neighbor), there is a
trivial upper bound of dW/2e on the maximal number of agents on a pixel.
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For any realistic input we did not observe more than three agents located
on the same pixel, thus, we consider this possibly large number of agents
residing on a pixel at the same time irrelevant for practical applications.

If, on the other hand, we consider the more restricted CONGEST model
that limits the message size per communication round to O(log n), our algo-
rithm has a runtime complexity of O(W (W +H)). Nevertheless, we estimate
that this model does not reflect the hardware platform for which we devel-
oped the algorithm: It was designed so as to allow for a transfer of every
cell’s memory to a neighboring cell in a single round. Thus, a limitation of
the message size would be rather artificial.

3.4.4 Implementation

In Section 3.4.2 we proved a runtime complexity of O(W + H) for our al-
gorithm. Thus, in theory it is highly efficient. To verify whether it is also
applicable, it was implemented for actual hardware in VHDL. An essential
element of this implementation was the transfer of our model into hardware:
Each pixel became a processing element (PE) on the final chip. The control
unit of each PE was implemented as a finite state machine.

An important aspect for the algorithms implementation was the number
of agents simultaneously residing on one pixel. As mentioned in Section 3.4.3
as many as Θ(W ) agents may be located on a pixel at the same time. How-
ever, only a small constant number of agents per pixel can be observed for
any realistic input. In the given implementation we allowed for three agents
to occupy a single pixel at a time.

The algorithm was first simulated. Thereafter, the design was synthesized
for a field-programmable gate array (FPGA) and for an application-specific
integrated circuit (ASIC). (Both, FPGA and ASIC, are integrated circuits.
While an FPGA can be (re-)configured after manufacturing, thus, allowing
for many different applications, an ASIC is a chip developed for specific
applications during the last procedural process.)

The synthesis resulted in chips of reasonable size and low power con-
sumption. So, with good cause we think that our algorithm can be turned
into ASICs, also for industrial typical resolutions. The observed low power
consumption and high chip frequency suggest that industrially manufactured
chips could well compete with a classic, centralized design. See [FFK+09] for
details of the implementation.
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3.5 Conclusion

We presented a novel sweepline algorithm for computing attributes, as the
center of gravity, for objects in a smart pixel image. The attributes are
extracted via a Principal Component Analysis. All steps in the algorithm
are local. We use an agent sweep for every object present in the image, even
though the start of the sweeping agent chains is purely local, joining multiple
chains for an object during the run of our algorithm if necessary.

The time complexity of our distributed algorithm is O(W+H) for objects
within a bounding box of W×H pixels. Thus, it outperforms any centralized
or in-object distributed algorithm—as Ω(WH) pixels may have to be treated.
Our algorithm can cope with any number of arbitrary intertwined objects.

This shows that using mobile agents (with limited capabilities) for a ge-
ometric problem that does not necessarily asks for these agents can result in
a faster algorithm.

Based on these theoretical results, we showed that our algorithm is simple
enough to be turned into hardware by synthesizing it for FPGA and ASIC.

As mentioned, our algorithm can easily be extended to cope with three-
dimensional objects and pixel grids. We are confident that the running time
for the three-dimensional case is linear in W + H + D (W being the width,
H the height and D the depth of the smallest axis-parallel box that contains
the considered object). Of course, a more detailed analysis of the three-
dimensional case could be the subject of future work.

Currently, several agents can be located on a single pixel. For real-world
data this does not seem to be an issue. And for our application we could get
rid of this problem by simply using a picture taken after a few milliseconds
and retry the analysis. By then the conveyor belt will have moved slightly.
Nevertheless, improving the theory in this aspect would be beneficial. An idea
would be to shrink the agent chains from inactive ends, probably resulting
in an increased run time complexity (Kröller [Krö10]).
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CHAPTER 4

Exploration with a Myopic Watchman with Discrete

Vision

In this chapter we study the problem of perceiving an entire polygon with
a mobile agent that has a limited range of visibility and may only acquire
visibility information (take a scan) when it is stationary. As both, moving
and scanning, takes time, our cost function is a linear combination of tour
length and number of scans. We seek an agent’s tour that minimizes the
cost.

4.1 Problem Description

Finding a route inside of a polygonal region such that each point of the
polygon becomes visible at least once for a watchman walking along this
route is a classical problem in computational geometry, the watchman route
problem first introduced by Chin and Ntafos [CN86].

Thinking of a mobile robot rather than an “ideal” watchman gives rise
to the following question: What happens if the watchman does not have
continuous vision with an unlimited range of visibility?

In case of a robot equipped with a 3D laser scanner both restrictions
apply. The distance in between two laser beams meeting an object is so
large for objects in a certain distance, that the scan does not allow for a
proper perception of far-off objects. Hence, rather than operating with an
unlimited range of visibility, the robot has a limited scan range. Moreover,
the single scans (the point clouds resulting from the scans) taken by the robot
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have to be mapped after the scan procedure. To do so properly, the robot
should be immobile while taking the scan. Resulting in proper defined point
clouds. Every scan takes a certain amount of time. Thus, perception of the
environment is possible only at discrete points in the environment; the robot
does not have continuous vision.

The abstract image of this kind of visibility are balls of a certain radius
around points, the visibility range of scans taken at these points. Whether
these balls can be depicted as squares or disks depends on the metric we
apply (L∞- or L2-metric, respectively). Consequently, the request of making
every point of the polygon visible to the watchman is equivalent to covering
the polygon with these balls (with an additional constraint that guarantees
visibility, that is, the line of sight to all points must lie inside of the polygon).

Finding a small cover of disks or squares is a classical problem (see
Tóth [Tót49], Aupperle et al.[ACKO88], Keil [Kei86], Franzblau and Kleit-
man [FK84] and Wu and Sahni [WS90]) with many applications (see for
example Tanimoto and Fowler [TF80]). The same is true for the prob-
lem of finding a shortest tour that connects a given set of locations (see
Mitchell [Mit00] for a survey on the Traveling Salesman Problem (TSP) and
its variants). In fact the problem of a watchman with range limited discrete
vision combines both problems. We intend to find a small set of scan points
that covers the environment and a short tour that visits all these points.
We call this resulting problem the Myopic Watchman Problem with Discrete
Vision (MWPDV).

4.1.1 Problem Statement

We are given a polygon P . In general, P may be a polygon with holes; in Sec-
tions 4.2, 4.3 and 4.4, P is an axis-parallel polygon with integer coordinates,
a rectilinear grid polygon.

Our robot, R, has discrete vision, i.e., it can perceive its environment
when it stops at a point and performs a scan, which takes c time units. The
points where R stops are called scan points. From a scan point p, only a ball
of radius r is visible to R, either in L∞- or L2-metric. A set S of scan points
covers the polygon P , if and only if for each point q ∈ P there exists a scan
point p ∈ S such that q sees p (i.e., qp ⊂ P ) and |qp| ≤ r.

We then define the Myopic Watchman Problem with Discrete Vision
(MWPDV) as follows: Our goal is to find a tour T and a set of scan points
S(T ) that covers P , such that the total travel and scan time is optimal, i.e.,
we minimize t(T ) = c · |S(T )| + L(T ), where L(T ) is the length of tour T .
Instead of minimizing this linear combination of scan point number and tour
length, we may also consider the bicriteria problem. That is, we want to give
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a solution (in fact an approximation) for both the scan number and the tour
length.

We distinguish MWPDV milling and MWPDV lawn mowing. In the
milling case the robot must stay in the polygon all the time, that is, all scan
points and the tour must lie inside of P . For the lawn mowing variant the
robot is allowed to leave the polygon, which in this case can be disconnected.

In the following Sections we will denote the MWPDV variant we cur-
rently consider by choosing one of the possible attributes in each case: recti-
linear/general MWPDV milling/lawn mowing for rectangular/circular scan
range. Rectilinear MWPDV denotes that we restrict to rectilinear grid poly-
gons. In fact, we describe results for the milling variant, a PTAS for a lawn
mowing variant was given by Mitchell [FMS09]. We use the terms visibility
range and scan range synonymously.

Organization of this Chapter. In the remainder of the current sec-
tion we present related work and we give some annotations on the MW-
PDV. In Section 4.2 we prove NP-hardness results. Thus, we focus on ap-
proximation algorithms. For different variants of the MWPDV (milling)
we present approximation algorithms in the subsequent sections: In Sec-
tion 4.3 we consider rectilinear grid polygons and unit L∞ scan range and
give a 2.5-approximation algorithm. This approximation generalizes the 2.5-
approximation for continuous milling by Arkin et al.[AFM00]. In Section 4.4
we consider rectilinear grid polygons and unit L2 scan range. For this prob-
lem variant we present a 4-approximation strategy. Section 4.5 provides an
approximation algorithm for the case of general polygons and an L2 scan
range. The algorithm has an approximation factor of max(21

4
, πr
a

+ πr
2

+ π
2
),

a constant factor for a bounded ratio of r/a. All these approximation algo-
rithms hold for both, the combined and the bicriteria version, as we account
for the scans and the tour separately. We conclude in Section 4.6.

We published the results presented in this chapter in [FMS09] (and a
journal version [FMS10]).

4.1.2 Related Work

Focusing on the discrete visibility only, we face the related classical art gallery
problem, that aims at locating a minimal set of scan points. On the other
hand, considering the tour planning aspect results in the watchman route
problem, that asks for a shortest route along which every point of the polygon
becomes visible at least once (for an explorer with continuous, unrestricted
vision). In addition, visiting all points of a given set is the classical Traveling
Salesman Problem (TSP). Finally, the tour planing with a restricted visibility
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range—without accounting for discrete visibility—is closely related to lawn
mowing and milling problems. For a cutter of a given size and shape the
milling problem asks for a shortest tour of the cutter, such that the entire
polygon is covered and such that the cutter is located inside of the polygon
for the entire route.

Art Gallery Problem. Looking for a set of discrete positions from which
all points of the polygon become visible for (stationary) guards (with unlim-
ited visibility) located at these points is the art gallery problem (see Urru-
tia [Urr00], O’Rourke [O’R87] and Shermer [She92]). This problem is based
on a question posed by Klee, who asked for the number of guards necessary
to be placed in an art gallery to guarantee complete visibility coverage of
all exhibits. That is, one asks for the minimum number of immobile guards,
G(P ), that cover all of a polygon P . g(n) is the maximum G(P ) over all
polygons of n vertices. Two points in a polygon are defined to be visible to
each other if the line connecting the points lies inside of P . Chvátal [Chv74]
was able to show that bn

3
c (stationary) guards are occasionally necessary and

always sufficient so that every point of a polygon with n vertices is visible
from at least one guard position (g(n) ≤ bn

3
c). Fisk [Fis78] gave a short and

simple proof for Chvátal’s result. He triangulated the polygon and 3-colored
the resulting structure, i.e., assigned a color (out of 3) to every vertex such
that two adjacent vertices do not share a color. The least frequently used
color cannot be used more than n

3
times (the sum of all colored vertices would

otherwise be greater than n). Consequently, by choosing the set of vertices
assigned to the least frequently used color Fisk obtained less than n

3
guards.

As each triangle of the triangulation must have all three colors at its vertices,
the chosen set sees all triangles and thus the entire polygon. g(n) was also
considered for more restricted classes of polygons, e.g., Kahn et al. [KKK83]
established g(n) ≤ bn

4
c for orthogonal polygons.

Beside various classes of polygons to be guarded (orthogonal polygons,
polygons with or without holes etc.), variations on the abilities of the guards
have been examined. In the classical Art Gallery Problem the guards are
stationary, i.e., bound to a single point that may be located at any possible
position inside of P ; these are called point guards. If the feasible locations are
restricted to vertices, we deal with vertex guards. Moreover, guards may have
the ability to move along certain structures. Edge guards are allowed to move
along an edge and survey all points visible to some point on this edge. Instead
of patrolling along an edge, diagonal guards move along diagonals, mobile
guards are allowed to use both. See Shermer [She92] for these definitions.

Alternatively, variations on the guards’ task have been considered, for
example, Laurentini [Lau99] required visibility coverage for the polygon’s
edges only.
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While the presented work of Chvátal and its variants on art gallery the-
orems focused on a sufficient number of guards for all polygons of n vertices
(g(n)), the art gallery problem asks for a minimum set of points (the guards,
G(P )), such that every point in a given polygon P is visible from at least
one point in G(P ).

O’Rourke and Supowit [OS83] proved this problem to be NP-hard by
a reduction from 3SAT, for guards restricted to be located on vertices and
polygons with holes. Lee and Lin [LL86] showed NP-hardness also for simple
polygons. This result was extended to point guards (that are allowed to be
located anywhere inside of P ) by Aggarwal (see [O’R87]); Schuchardt and
Hecker [SH95] gave NP-hardness proofs for rectilinear simple polygons, both
for point and vertex guards.

Based on these NP-hardness results approximation algorithms gained in-
terest. Eidenbenz et al. [ESW01] established lower bounds on the achievable
approximation ratio. They gave a lower bound of Ω(log n) times the optimal
number of guards for polygons with holes. For simple polygons and vertex,
edge and points guards they showed that there is a constant δ > 0 such that
no polynomial algorithm can achieve an approximation factor of (1 + δ). For
restricted versions approximation algorithms have been presented. Efrat and
Har-Peled [EHP06] gave a randomized approximation algorithm with loga-
rithmic approximation ratio. Ghosh [Gho10] presented algorithms for vertex
and edge guards only, with an approximation ratio of O(log n). The algo-
rithm is based on considering the arrangement of the visibility polygons of
P ’s vertices and using a set cover approach. For point guards Nilsson [Nil05]
gave O(OPT 2)-approximation algorithms for monotone and simple rectilin-
ear polygons. For the even more restricted case of 1.5D terrains Ben-Moshe et
al. [BMKM05] present a constant-factor approximation. Another constant-
factor approximation was provided by Clarkson and Varadarajan [CV05],
King [Kin06] presented a 5-approximation, Elbassoni et al. [EKM+11] im-
proved this factor and obtained a 4-approximation. Gibson et al. [GKKV09]
presented a PTAS.

See Ghosh [Gho10] for an overview of approximation algorithms for art
gallery problems.

Instead of aiming for approximations, algorithms for placing g(n) guards
that cover the entire polygon have been considered. Avis and Toussaint [AT81]
gave an algorithm based on Fisk’s triangulation proof of Chvátal’s theorem
to place bn

3
c guards in O(n log n). Due to Chazelle’s linear time triangulation

algorithm [Cha91] this could be improved to O(n).
In addition, the problem of covering the polygon has been considered. As

the visibility polygon of a single guard is star-shaped, covering the polygon
with star-shaped polygons yields a set of guards. Keil [Kei86] gave an O(n2)
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algorithm for covering a horizontally convex orthogonal polygon with star-
shaped polygons. That is, for this restricted class of polygons a minimum set
of guards can be found in polynomial time. For other types of covers, e.g.,
covering with rectangles, the resulting number is of course not the optimal
set of guards but may yield an approximation. For example, Franzblau and
Kleitman [FK84] presented an algorithm to cover a rectilinear polygon with
rectangles. However, many minimum cover problems are NP-hard. Culber-
son and Reckhow [CR88] presented a couple of NP-hardness results: amongst
others for covering (even simple) polygons with convex polygons.

For some other special cases optimal solutions can be computed in poly-
nomial time. Worman and Keil [WK07] presented an exact algorithm for
rectilinear polygons an a special visibility restriction: Two points see each
other if and only if the orthogonal rectangle defined by those points is fully
included in the polygon (denoted by r-visibility in [WK07]).

Moreover, heuristic solutions have been considered. Amit et al. [AMP10]
presented heuristic solutions, with the guards taken from different candidate
sets, like vertices and more enhanced points. In addition, they presented
some lower bounds that they used for a comparison with the heuristic solu-
tions. The lower bounds are based on the visibility polygons of a certain set
of points. Considering the visibility polygons of two points, we know that we
need at least two guards to survey these points in case the visibility polygons
are disjoint. Therefore, a candidate point set S is chosen and we build a graph
with vertices for these points, plus edges in case of intersecting visibility poly-
gons. Then we search for the maximum independent set. Because finding a
maximum independent set is NP-hard, Amit et al. use a greedy strategy: it-
eratively add the node with the smallest degree to the set I, and remove this
node and its neighbors from S. This greedy approximation algorithm has a
performance guarantee of only 1/( |E||V | + 1) (see Jansen and Margraf [JM08]).

|I| gives a lower bound on the number of guards necessary to cover S, and
thus a lower bound on the guards needed for P . Amit et al. include convex
vertices and midpoints of edges incident to two reflex vertices to the candi-
date sets. Couto et al. [CSR07, CdSdR08, CdRdS09] consider exact solutions
for a special case of the Art Gallery Problem: vertex guards in simple poly-
gons. Their approach is based on a set-cover integer program, applied to a
grid discretization, which is iteratively refined if necessary. Recently, Baum-
gartner et al. [BFKS10] presented a primal-dual algorithm based on linear
programming for the general art gallery problem that gives lower bounds on
the number of guards and—in case of convergence and integrality—ends with
an optimal solution.

Watchman Route Problem. The classical problem that asks for a short-
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est route inside of a polygon P along which every point of P becomes visible
to at least one point along the route, the watchman route problem, was stated
by Chin and Ntafos [CN86]. They presented a strategy for a watchman route
in simple rectilinear polygons in O(n log n). They defined essential edges, the
strategy deletes all parts of the polygon outside of these edges and triangu-
lates the remaining polygon. This polygon is unfolded along the essential
edges. Finding the shortest watchman route in a simple rectilinear polygon
is then equivalent to finding the shortest path between an edge and its image
in the new geometrical structure. Moreover, Chin and Ntafos showed that
the watchman route problem is NP-hard for polygons with holes (even if
polygon and holes are convex or rectilinear) by a reduction of the geometric
traveling salesman problem.

Later Chin and Ntafos [CN91] presented an algorithm for the computation
of a shortest watchman route in a simple polygon in O(n4 log log n) in case of
a given starting point on the boundary. Improvements of the runtime (and
the correction of a small error) were presented by Tan et al. [THI91, THI99,
TH93]. Those algorithms rely on the linear time triangulation algorithm by
Chazelle [Cha91].

A first polynomial time algorithm for the case without a given starting
point was presented by Carlsson et al. [CJN93]. (The starting point condition
may result in an optimal watchman route that is arbitrarily longer than the
optimal route without this restriction.) As this algorithm runs in O(n6),
Nilsson [Nil01] gave a constant-factor approximation that runs in O(n log n).

The online version of the watchman route problem, in which the polygon
is unknown in advance, has been studied extensively. Kleinberg [Kle94] gave
a lower bound of 5/4 for the competitive ratio of any online algorithm in
simple polygons without a specified starting point on the boundary, but in the
polygon’s interior. For simple rectilinear polygons with a given starting point
on the polygon’s boundary, Deng et al. [DKP98] presented the 2-competitive
greedy-online strategy. Hammar et al. [HNS02] gave an improved version
of this strategy, with a competitive ratio of 5/3. This ratio was further
improved to 3/2 by Hammar et al. [HNP06]. For the less restricted case
of simple polygons Hoffmann et al. [HIKK01] presented a 26.5-competitive
strategy based on a structure called angle hull, thereby improving their bound
of 133 given in [HIKK97].

In contrast to those competitive strategies, Albers et al. [AKS99] showed
that no competitive online algorithm can be found for polygons with holes.

Watchmen with discrete vision. Discrete vision was considered by
Carlsson et al. [CNN93]: For a robot with a vision system active only at dis-
crete points, vision points, they asked for a shortest route connecting those
point such that each point of the polygon is visible from at least one vision
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point. They proved that finding the minimum number of vision points along
a shortest watchman route is NP-hard in simple polygons (by a modified
proof of Lee and Lin [LL86]).

Wang et al. [WKG07b] assigned cost to both traveling and scanning (at
discrete points, view points, and with unlimited range of visibility). They
considered only a discrete set of potential view points and present an ap-
proximation algorithm for this problem, the Traveling View Planning Prob-
lem (Traveling VPP), that uses an IP-formulation. Moreover, Wang et
al. [WKG07a] considered a problem without a given discrete set of possi-
ble scan positions. They presented the Whole Edge Covering Generalized
Watchman Route Problem (WEC-GWRP), that asks for a tour along which
scan points are located such that the entire polygon boundary becomes vis-
ible and every edge of the polygon is entirely visible from one scan point.
Wang et al. gave an approximation algorithm for the WEC-GWRP by sam-
pling via a visibility cell decomposition and then using the approximation
result for the Traveling VPP.

Arkin et al. [AAB+06] presented a polynomial time approximation scheme
for the problem of covering a set of points by a number of scans and connect-
ing these scans by a tour, the objective function being a linear combination of
scan cost and travel cost. Here, the set to be scanned is discrete. Moreover,
scan cost is a function of the scan radius, that is, the size of the scan radius
may vary.

Online problems with discrete visions have also been considered. Ghosh
et al. [BGS01, GBBS08] assigned cost for the scans only (that is, the route
connecting the scan points does not infer any costs). Their online algorithm
has a competitive ratio that depends on the number of reflex vertices, r.
In addition to the discrete vision Ghosh et al. considered exploration with
a robot with a limited visibility range R, with the same cost model. The
presented algorithm has a competitive ratio of

b8π
3

+
πR× Perimeter(P )

Area(P )
+

(r + h+ 1)× πR2

Area(P )
c

for a polygon P with h holes.
For an online watchman problem with unrestricted but discrete vision,

Fekete and Schmidt [FS10] presented a strategy with constant competitive
ratio for polygons of bounded feature size and with the assumption that
each edge of the polygon is fully visible from some scan point. For limited
visibility range, Wagner et al. [WLB00] discussed an online strategy that
chooses an arbitrarily uncovered point on the boundary of the visibility circle
and backtracks if no such point exists. As cost they only considered the length
of the path used between the scan points, scanning causes no cost. Then,
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they can give an upper bound on the cost as a ratio of total area to cover
and squared radius.

Another type of short-sighted explorer was considered by Icking et al.
[IKKL05]. The robot moves in an unknown cellular environment under the
assumption that a cell is explored when it is entered during the exploration.

See Ghosh and Klein [GK10] for a survey on online exploration algorithms
with different capabilities of the explorer.

Lawn Mowing and Milling. The problem of covering a polygon by a
mobile cutter moving along a shortest route (with the cutter inside of the
polygon at all times), the milling problem, has been considered by Arkin
et al. [AFM00]. They presented a 2.5-approximation algorithm for milling,
running in O(n log n). Moreover, they gave a (3 + ε)-approximation method
for the lawn mowing variant, in which the cutter is allowed to leave the
polygon. A variant that asks for minimizing the cost of turns in a covering
tour with a given tour was considered by Arkin et al. [ABD+01].

The online variant of this problem was considered by Gabriely and Ri-
mon [GR03]. They restricted the cutter to be a square of size D that is
allowed moves in directions orthogonal to the cutter’s four sides only. For
this version they present worst-case optimal online algorithms.

Traveling Salesman Problem. The traveling salesman problem asks
for a shortest tour that visits all points of given (finite) set. Papadim-
itriou [Pap77] showed that this problem is NP-hard, even for point sets in
the Euclidean plane. The TSP has been studied extensively, see for ex-
ample Lawler et al. [LLRS85]. A couple of approximation algorithms has
been presented for the TSP. For general metrics the 1.5-approximation by
Christofides (see Schrijver [Sch03]) is the best known. Polynomial time ap-
proximation schemes were presented by Arora [Aro98] and Mitchell [Mit99]
for point sets embedded in the Euclidean plane.

Finding a shortest tour that visits at least one point from each neigh-
borhood is the TSP with neighborhoods (TSPN). Dumitrescu and Mitchell
[DM03, Mit07] presented approximation algorithms and a polynomial time
approximation scheme for the TSPN.

4.1.3 Some Notes about the Problem

Before we start to present our results on the MWPDV, we like to highlight
two important aspects for any further consideration.

After observing the NP-hardness of the MWPDV (proofs in Section 4.2),
we are interested in approximation algorithms or even in polynomial-time
approximation schemes (PTAS). As mentioned in the introduction to this
section, the MWPDV combines the minimum cover problem and the TSP, in
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(a) (b)

Figure 4.1: Example showing the impossibility of combining a minimum cover
and a TSP PTAS for a MWPDV PTAS. (a) A minimum number of scans with the
corresponding tour; (b) A tour with minimum tour length and the corresponding
covering scan point set.

case the scan range is in the order of magnitude of the polygon’s feature size.
Both problems allow for a PTAS: Hochbaum and Maass [HM85] gave a PTAS
for minimum cover, Arora [Aro98] and Mitchell [Mit99] presented polynomial-
time approximation schemes for the TSP. Thus, the intuitional approach
would be to use the PTAS for minimum cover to compute a set of scan points
and compute a tour on these points with the second approximation scheme.
However, we do not obtain a PTAS for the MWPDV by this combination.
To see this, we consider two MWPDV (with unit rectangular visibility range)
solutions for the example in Figure 4.1: In (a) a minimum number of scans
with the corresponding tour is shown, in (b) a tour with minimum tour length
and the corresponding scans that cover the polygon is depicted. Thus, using a
PTAS to obtain a solution for one of the subproblems, we cannot combine this
solution with a (1 + ε)-approximation for the other. In particular, because
the relative weights of tour length and scan cost in the objective function
influence on the optimal solution. So, there is no simultaneous PTAS for
both problems. This naturally gives rise to the bicriteria problem stated in
Section 4.1.1. With the approximation algorithms presented in Sections 4.3
and 4.4 we are able to give constant-factor approximations for the combined
version (as well as for the bicriteria problem).

Moreover, when the scan range r is large in comparison to the minimum
side length of the polygon, a, we may actually face the art gallery problem,
see Figure 4.2. In case the scan range is sufficiently large, such that taking
scans at the two points on the left allows for a perception of the niches (called
“wells” in [AMP10]), locating scan positions at these points would suffice to
cover all niches (the visibility polygons of the two points meet or even overlap
in all niches). But, the locations of this pair of points must not coincide with
vertices of the polygon, vertices of the polygon’s arrangement of visibility
polygons, they must not even be located on diagonals in the polygon. So, we
do not have certain candidate points to choose from.
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Figure 4.2: A minimum guard cover (points) with the corresponding tour length
(dashed) in a polygon. The gray lines indicate lines of sight from the two left points.

As mentioned in Section 4.1.2 the Art Gallery Problem is NP-hard for
several classes of polygons and variants on the placement of guards, see for
example Lee and Lin [LL86]. For certain classes of polygons a minimum set
of guards can be found in polynomial time. For example, Keil [Kei86] gave
an O(n2) algorithm for covering a horizontally convex orthogonal polygon
with star-shaped polygons. For the general problem, neither constant-factor
approximation algorithms nor exact solution methods are known. Approx-
imation algorithms are only known for restricted versions of the problem.
As described in the preceding section, Efrat and Har-Peled [EHP06] gave an
O(logOPT )-approximation when the candidate guard points are limited to,
for example, the vertices of the polygon.

In addition, for our problem we have to consider the objective function:
We are only interested in a small guard cover in case the cost for scan points
dominates the tour length. If, on the other hand, the tour length dominates
the objective function, we may want to follow a tour alongside the niches (at
the right side of Figure 4.2).

Consequently, for general polygons we will bound the ratio r
a
. We will

give a constant-factor approximation for a bounded value of r
a

in Section 4.5.
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4.2 NP-Hardness

In this section we show that even the simplest variants of MWPDV milling
are NP-hard.

Theorem 8. MWPDV milling is NP-hard, even for rectilinear grid polygons,
a uniform rectilinear visibility range and

1. small or no scan cost, that is, c� 1 or c = 0

2. small travel cost, that is, c� 1

3. no travel cost, that is, t(T ) = |S(T )|

Proof. The first claim is a direct consequence of the NP-hardness of minimum
cost milling, proven by Arkin et al. [AFM00]. The proof given by Arkin et
al. uses the reduction from the problem Hamiltonian circuit in planar

bipartite graphs with maximum degree 3 to the problem Hamiltonian

circuit in grid graphs (HGG), see Itai et al. [IPS82]. A grid graph is a
node-induced finite subgraph of the infinite grid. For this reduction a parity-
preserving embedding of the bipartite planar graph B into a rectangular
grid graph G is used. The final considered grid graph G9 is obtained by
multiplying the scale of G by 9. Vertices in the constructed graph correspond
to 9-clusters (the 9 nodes of a 2×2-square), edges are represented by tentacles,
that is, unions of rectangular graphs with minimum dimension 2. So, starting
with a graph B with n vertices, G9 has m = O(n) vertices. The tentacles
can be covered by two Hamiltonian paths: a cross path (starting and ending
in vertices corresponding to the 9-cluster of two different vertices of G) or a
return path (starting and ending in vertices corresponding to the 9-cluster
of one vertex of G). In case the edge is in the Hamilton circuit in B the
cross path is used, otherwise the return path is used. The 9-clusters can
only be covered by a Hamiltonian circuit if it is incident to exactly two cross
paths. For the NP-hardness proof of minimum cost milling for an aligned
unit square cutter, Arkin et al. defined the polygon to be the union of all
placements of the cutter at the vertices of G9. Then, if there is a tour of
length m in G9, there is a lawn mower (and also a milling) tour of length
m. A lawn mower/milling tour of length m exists only when no point in
the polygon is covered more than once. Consequently, the tour induces a
partition of the polygon in non-overlapping rectangles of width 1 and integer
length. Traversing a strip is equivalent to visiting the corresponding grid
vertices of G9. Consequently, a lawn mower/milling tour of length m induces
a tour of length at most m in G9.
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When scanning infers small or no scan cost for the MWPDV, we ask for a
shortest tour, such that (an arbitrary number of) scan points along this tour
allows for coverage of the polygon. Consequently, we ask for the shortest
milling tour in G9. Hence, the NP-hardness is a direct consequence from the
minimum cost milling reduction described above.

The second claim can be directly deduced from the NP-hardness of Hamil-
tonicity of Grid Graphs, proved by Itai et al. [IPS82] as described in the
preceding paragraphs. We turn a given instance G of HGG with n vertices
into an instance of MWPDV: We scale the grid graph G by a factor of two
and substitute each grid point of G for a 2x2-square. Such, we obtain a set
of n scan point that is contained in any optimal MWPDV solution. Visiting
these scan points with a tour of length 2n is possible if and only if there
exists a Hamilton circuit in G.

In the problem addressed with the third claim we aim at covering the
polygon with scans only. Hence, the problem is obviously closely related
to a minimum cover problem with (visibility L∞-) disks. Though, for the
MWPDV only the centers of the disks have to be located in the polygon’s
interior. The proof of this claim is based on a reduction of the NP-hard
problem Planar 3SAT, a special case of 3SAT in which the variable-clause
incidence graph H is planar. The proceeding is along the lines of Baur and
Fekete [BF01]. First, we construct a planar layout of H, for example by the
method given by Rosenstiehl and Tarjan [RT86]. We will turn this embedding
into a rectilinear grid polygon: We represent the variables, clauses and edges
by polygonal pieces.

See Figure 4.3 for an example for the variable component. There are
two ways to position a minimum number of scan points for the variable
gadgets. One possibility—the black points in Figure 4.3 (a)—corresponds to
a truth setting satisfying the clause for this variable. That is, a setting of
“true” if vi is in the clause, a setting of “false” if ¬vi appears in the clause.
The other possibility—the circles in Figure 4.3(a)—corresponds to a truth
setting not satisfying the clause. A connection of an edge corridor is shown in
Figure 4.3(b): For the variable setting satisfying the clause the scan squares
are pushed further into the edge corridor. See Figure 4.3(c) and (d) for
the scan square positions at the edge corridor connection for the two truth
settings. To guarantee the same number of points and circles, edge corridors
may be added that do not end in another polygonal piece, but assure this
parity (with circles at the edge corridor). The edge corridors are constructed
analog to the variable components, in particular bendings are constructed
accordingly.

A clause gadget is shown in Figure 4.4. The edge corridors of the three
associated variables meet in the polygonal piece for the clause (depicted dark
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(a)

(b)

(c) (d)

Figure 4.3: Top row: (a) The polygonal piece for a variable and (b) the connection of
an edge corridor. Bottom row: a placement corresponding to a truth setting satisfying the
clause (c), and a placement corresponding to a truth setting not satisfying the clause (d).
The light gray scan is used in both cases.

(a) (b) (c)

Figure 4.4: A clause component with the polygonal piece (dark gray) and the three
according edge corridors (blue)(a). A placement corresponding to a truth setting satisfying
the clause (b), and a placement corresponding to to a truth setting not satisfying the clause
(c). The green squares are the scans necessary inside the clause.
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gray in Figure 4.4). Three additional scans are sufficient to cover this poly-
gonal piece if and only if the clause is satisfied, that is, if at least in one edge
corridor the scan square is located at the black point. Otherwise, four scans
are necessary.

With these components we can compute the parameter k, the number of
square scans necessary to cover the resulting rectilinear grid polygon P . k
is polynomial in the number of vertices of H and k is part of the input. All
vertices of P have integer coordinates of small size. The number of vertices
of P is polynomial in the number of vertices of H. So, we can conclude that
the problem is NP-hard.

4.3 Approximation for Rectilinear MWPDV
Milling for Rectangular Scan Range

The first approximation algorithm that we present is for the case of a uniform
rectilinear visibility range and rectilinear grid polygons. The tour length is
measured according to the L1-distance. The approximation is for the case
that no starting point is given. This algorithm already provides some general
ideas for the other cases that we approximate.

The next lemma allows us to locate scan points at grid points only:

Lemma 1. For a rectilinear grid polygon P there exists an optimum myopic
watchman tour with discrete vision T ∗ such that all (unit L∞-) scan points
are located on grid points:

∃T ∗∀(xs, ys) ∈ S(T ∗) : xs ∈ Z ∧ ys ∈ Z. (4.1)

Proof. Let T be an optimal tour, with (some) scan points not located on grid
points. First, we shift the scans horizontally, such that the x-coordinates are
integers: starting from the boundary, i.e., with distance 1 to the boundary if
possible (this is not possible in case the width of the polygon is only a pixel),
and away from non-reflex corners. The tour will not be longer and we do
not cover less. In case we are able to reduce the number of scans we have a
contradiction to T being optimal. The same is true if we shorten the tour by
shifting horizontally. After shifting horizontally, we proceed analogously for
the vertical direction. Hence, we have an optimal tour, with all scan points
located on grid points.

We approximate the MWPDV solution in two steps:
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1. We construct a set of scan points that has not more than 2.5 times the
number of scan points in a set of minimum cardinality.

2. We construct a tour that contains all scan points located in 1. and that
is not longer than 2.5 times the length of an optimum milling tour.

We start with the second step. The basic idea for the tour originates from
the 2.5-approximation for the milling problem from Arkin et al. [AFM00]. For
the milling problem a solid shape (e.g., a circle or a square)—the “cutter”—
has to cover every point in a given region. The problem asks for the shortest
tour along which the cutter moves that allows for complete coverage. The
cutter has to stay within the region. When we interpret our visibility range
as a cutter, we do not face the constraint that the entire cutter must stay
within the region—only the center point, the robot itself, must be located in
the polygon at all times. In case of corridors of width 1 we extend the notion
for the milling tour accordingly.

Let LOPT denote the optimal milling tour length (as defined above). The
tour is constructed from three parts, see Figure 4.5 for an example.

• A “boundary” part: We consider the inward offset region of all points
in our polygon P that are feasible locations for the cutter. Let this
region be B(⊂ P ). Moving along the boundary δB of B a region in
P is milled, we let this region be denoted by PδB (shaded in light blue
in Figure 4.5). In case P features holes, δB is not connected and we
denote the pieces by δBi. In case of corridors of width 1 we connect the
parts of δB by shortest paths. (In addition, for corridors of P of width
1 that do not connect two δBis, we use shortest path on the grid such
that every pixel of these corridors is adjacent to a part of this extended
δB). The total length, LδB, is a lower bound on LOPT: LOPT ≥ LδB.
This “boundary” part is shown in pink in Figure 4.5.

• A “strip” part: The strips are constructed to cover the still not watched
interior, depicted in white in Figure 4.5, if it exists. Thus, we consider
Pint := P\PδB. We cover this region with a set of k horizontal strips
stri (i = 1, . . . , k). The y-coordinates of these strips differ by multiples
of 2. The total length of these strips, Lstr =

∑k
i=1 Lstri , is then again

a lower bound for LOPT: LOPT ≥ Lstr. This “strip” part is shown in
violet in Figure 4.5.

• A “matching” part: The “boundary” and “strip” parts described above
allow for complete visibility coverage of P , but we are still left with the
task to combine those tour components for a closed tour. This third and
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strip

matching

Figure 4.5: A rectilinear grid polygon P . The parts for the approximative milling tour
are indicated: region PδBi is shaded (light blue), δBi is highlighted in pink.

last “matching” part serves as this connecting element. We consider the
endpoints of the strips on δBi. Every δBi is partitioned in two disjoint
portions by these endpoints. We denote these portions by M1(δBi) and
M2(δBi). Using the shorter of these two (M∗(δBi)) for every δBi, we
obtain for the combined length, LM : LM ≤ Lstr/2 ≤ LOPT/2. This
“matching” part is shown in orange in Figure 4.5.

In the description of the “matching” part we justified its construction by
the claim that it allows us to combine the other two components for a closed
tour. To see this, we consider the graph G with vertices for endpoints of strip
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lines and points where a strip line touches a δBi. The vertices are connected
by three different edge types: center lines of strips, the (parts of the) δBis
and the M∗(δBi)s. In G every vertex has degree 4, hence we may construct
an Eulerian tour and this yields a feasible solution.

Having constructed the tour, we proceed with the first step and construct
a covering set of scan points, see Figure 4.6.

i. Consider the 2× 2-squares that are fully contained in P and have two
even coordinates. Let S4,e denote the centers of these“even quadruples”.
Remove all 2×2-squares that are centered in points from S4,e, depicted
in gray in Figure 4.6. Let P\{(4,e)} denote the remaining rectilinear grid
polygon.

ii. In P\{(4,e)} greedily pick a maximum disjoint set S4,o of “odd quadru-
ples”: 2× 2-squares that are fully contained in P and have at least one
odd coordinate, shown in green in Figure 4.6. Let P\{(4,e)∪(4,o)} denote
the remaining rectilinear grid polygon.

iii. In P\{(4,e)∪(4,o)} greedily pick a maximum disjoint set S3 of“triple”scans:
2× 2-squares that cover 3 pixels of P\{(4,e)∪(4,o)}. These triple scans are
shown in blue in Figure 4.6. Let P\{(4,e)∪(4,o)∪(3)} denote the rectilinear
grid polygon that remains after deleting the pixels corresponding to
2× 2-squares centered in S3.

iv. In P\{(4,e)∪(4,o)∪(3)} no 3 pixels can be covered by a single scan (a 2× 2-
square). Consider the remaining pixels as vertices of a graph H. Two
vertices in H are connected by an edge whenever the corresponding
pixels may be covered by the same scan (whenever a 2× 2-square can
cover both pixels). Compute a maximum matching in H. This yields
a minimum set of scans in P\{(4,e)∪(4,o)∪(3)}: The scans corresponding
to the matching cover two pixels, those are “double” scans S2, the re-
maining pixels are covered by “single” scans S1. The double and single
scans are depicted in red and yellow, respectively, in Figure 4.6.

Claim 6. The total number of scans is at most 2.5 times the size of a mini-
mum cardinality scan set.

Proof. Let smin denote the size of a minimum cardinality scan set. The 2×2-
squares corresponding to S4,e and S4,o are fully contained in P . Thus, as no
scan of the optimum can cover more than 4 pixels, we have |S4e∪S4o| ≤ smin.

So, we still need to bound |S3 ∪ S2 ∪ S1|. In P\{(4,e)∪(4,o)} a single scan (a
single 2 × 2-square) cannot cover more than 3 pixels. In P\{(4,e)∪(4,o)∪(3)} we
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Figure 4.6: An example for our approximation method (polygon P from Figure 4.5):
The set of “even quadruple” scans is shown in grey; the “odd quadruple” scans are green.
A possible (greedy!) set of “triple” scan is shown in blue, leaving the maximum matching
(and the corresponding “double scans”) shown in red. The leftover single pixels are yellow.
The ellipses indicate a part that is covered by three scans instead of two. The triple scan
with adjacent single and double scans could be covered by two triple scans. The triple
scan with adjacent single scans could be covered by a triple and a double scan.

compute an optimal solution. Thus, the only way we could have improved our
cover for P\{(4,e)∪(4,o)} is by selecting a different set of triple scans (i.e., triple
scans at different positions). P\{(4,e)∪(4,o)} does not contain any 2×2-squares.
Hence, a simple case analysis shows that only two possible improvements are
possible:
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Figure 4.7: Modifying the boundary part at a reflex vertex, the gray path is used instead
of δBi.

• replacing a triple, a double and a single by two triples (as shown in the
upper ellipse of Figure 4.6), or

• replacing a triple and two singles by a triple and a double (as shown in
the lower ellipse of Figure 4.6).

Let s4
min be the minimum number of scan points required for covering

P\{(4,e)∪(4,o)}. The case analysis yields |S3 ∪ S2 ∪ S1| ≤ 3
2
s4

min ≤ 3
2
smin.

Thus, altogether we have: |S4e∪S4o|+|S3∪S2∪S1| ≤ smin+ 3
2
smin = 5

2
smin.

That is, in total we construct a set of scan points with no more than 2.5 times
the number of scans in a minimum cardinality scan set.

Claim 7. All scan points constructed in step 1 lie on a 2.5-approximative
milling tour, as constructed in step 2.

Proof. We choose for the center lines of strips to be located on even y-
coordinates. Thus, we visit all scan points in S4e by tracing the strips. In
addition, all pixels in P\{(4,e)} are either boundary pixels or are adjacent to
boundary pixels in P . Consequently, all these pixels may be visited when
tracing the “boundary” part of the tour—one minor adjustment of this tour
may be necessary for triple scans. To visit the center of a triple scan located
on a reflex vertex we need to reroute the boundary part as shown in Figure
4.7, this does not influence on the tour length.

This concludes the proof for the approximation factor of our algorithm.
We summarize:

Theorem 9. A rectilinear grid polygon P allows for a MWPDV milling with
rectangular vision solution that uses no more than 2.5 times the number of
scans in a minimum cardinality scan set and has a tour length that does not
exceed 2.5 times the length of an optimum milling tour.
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Figure 4.8: A finite number of scan points along the center line of a corridor of width
2r does not suffice to cover the corridor with a circular scan range of radius r.

4.4 Approximation for Rectilinear MWPDV
Milling for Circular Scan Range

The approximation algorithm we present in this section is for the case of a
uniform circular range of visibility and rectilinear grid polygons. The tour is
again measured according to the L1-distance. The approximation is for the
case that no starting point is given or for the case of a given starting point
located on a grid point (in the rectilinear grid polygon or on its boundary).

Before we give the details of our approximation, note an additional diffi-
culty of a circular scan range. Using a circular scan range of radius r with
continuous vision allows to cover a corridor of width 2r by moving along
the corridor’s center line. In contrast, using only discrete scan points, we
face boundary effects: A finite number of discrete scan points located on the
corridor’s center line do not allow for coverage of the total width of 2r, see
Figure 4.8. Consequently, we have to treat this effect.

Again, we approximate the MWPDV solution in two steps.

1. In the first step we construct a set of scan points that covers P .

2. In the second step we construct a tour that visits all scan points located
in step 1.

We start with the construction of a covering set of scan points. We overlay
the rectilinear grid polygon with a point grid as in Figure 4.9, left. That is,
we apply a diagonal point grid with L2-distance of

√
2 in-between points,

and use all points of this grid that coincide with a grid point in P as scan
points (drawn in dark gray in Figure 4.9, left).

For the second step, the tour T , our strategy starts at a boundary grid
point. We then construct our tour counterclockwise along the boundary (tak-
ing a scan at every point of the overlayed diagonal points grid located on the
boundary). We still have to expand our tour, because with this construction
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Figure 4.9: Left: Point grid (light gray) with grid points within a rectilinear grid polygon
(black) in dark gray. Right: Circular visibility ranges of the grid points covering the plane,
one square of side length

√
2 is indicated by a dashed line.

we would be left with a tour covering an area around the boundary. Thus,
we include movement in-between interior scan points.

We use horizontal strips located on grid lines (that is, the y-coordinates
of these strips differ by 1) and distance 1 to the boundary, shown in yellow
in Figure 4.10 for an example. In order to combine these grid lines with
the boundary path for a tour, we link strips to the left boundary. Two of
these will in general be linked on the right-hand side. Those connections
are depicted in solid blue in Figure 4.10. In case there is an odd number of
strips between the upper and lower boundary of P , the scan points located
on the bottommost strip are visited by using a path of (L1-)length 2, from
the boundary or strips with another y-coordinate of the leftmost point, see
Figure 4.10, down right. The strips that get linked are always determined
by the leftmost boundary. In case there are other parts of P that have a left
boundary (that is vertical edges with polygon to the right and the exterior to
the left) whose cardinality of strip lines differ by an odd number, scan points
from the topmost strip are linked by two vertical steps of length 1 to the
upper boundary, see Figure 4.10, top right. These (L1-)length 2 connections
are drawn in dash-dotted blue in Figure 4.10. So, we yield a closed tour: We
always link two strips, hence, we always end up at the left boundary, the rest
is a tour along the boundary with small loops of length 2. Moreover, as it
was constructed like this, the tour visits all scan points located in step 1.

We still need to show that P is covered and have to consider the approxi-
mation factor of our strategy. Let T be the tour determined by our strategy,
and T ∗ be an optimal tour.

Lemma 2. The scan points the strategy positions (in Step 1) cover P .
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Figure 4.10: A rectilinear grid polygon P with the tour given by our strategy. Scan
points are displayed in black. The horizontal strips of total length Lstrips are indicated in
yellow, the tour is in blue for the links to the boundary and in-between strips (solid) as
well as for connections of points (dash-dotted), parts located on the strips are indicated
in red. (In-between those parts the tour runs on the boundary.)

Proof. The scan range is a L2-circle of range r. The scan points are located
in a diagonal point grid with L2-distance of

√
2 in-between points. Each

circle covers at least a square of side length
√

2, with the vertices located on
grid points that do not belong to the overlayed grid, see Figure 4.9 right.

Lemma 3. L(T ) ≤ 4 · L(T ∗) + 8

Proof. Our tour consists of the tour along the boundary of P , the strips and
connections.

Let LδP denote the length of P ’s boundary, i.e., its perimeter. Let LδB
be defined as in Section 4.3. Moreover, let the length of the horizontal strips
be Lstr(y−dist1).

We show that the length of our tour T does not exceed the combined
length of these three components. The parts of T running along the boundary
are covered by the δP . All parts of T that are located on the strips are covered
by the part of length Lstr(y−dist1). The right-hand side links of two adjacent
strips lie on δB. The left-hand side connections can be turned by 90◦ (only
for charging) and lie on δB as well. The scan point connecting paths of length
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2 can be swung open and lie on the strip of the relative (not used) strip or
one part (length 1) on δB for interior strip points or endpoints of strips,
respectively. Consequently, the sum of LδP , LδB and Lstr(y−dist1) is an upper
bound for our tour length, L(T ): L(T ) ≤ LδP + LδB + Lstr(y−dist1).

For an orthogonal polygon of n vertices, r of which are reflex, we have
n = 2r + 4 (see O’Rourke [O’R87], Lemma 2.12). Hence: LδP = LδB + 8.
Furthermore, we have Lstr(y−dist1) ≤ 2 · Lstr ≤ 2 · L(T ∗), with Lstr as defined
as in Section 4.3. Finally, the milling argument still yields LδB ≤ L(T ∗).

When we combine these bounds, we obtain:

L(T ) ≤ LδP + LδB + Lstr(y−dist1)

≤ 2 · LδB + 8 + Lstr(y−dist1)

≤ 4 · L(T ∗) + 8.

Lemma 4. |S(T )| ≤ 4 · |S(T ∗)|
Proof. Let N(P ) be the number of pixels of a rectilinear grid polygon P . To
be precise we write SP (T ) (instead of S(T )) to indicate the polygon we refer
to for the scan points. We then define R(N(P )) as follows:

R(N(P )) = max{ |SP (T )|
|SP (T ∗)| |P has N(P ) pixels}

Kershner [Ker39](see Tóth [Tót49]) showed for D(r) = πr2|SP (T ∗)|
N(P )

:

D(r) ≥ 2
√

3π

9

So, for r = 1, we obtain:

|SP (T ∗)| ≥ 2
√

3

9
·N(P )

With our approximation algorithm we place scan points on the diagonal
grid, so there is an upper bound of 2 + (N(P )− 1) = N(P ) + 1 for the scan
points we use. Consequently, an upper bound on R(N(P )) is given by

N(P ) + 1
2
√

3
9
·N(P )

.

We define F (n) := n+1
2
√
3

9
·n

. F (n) is monotonically decreasing in n. Moreover:

F (n) = 4⇔ n =
3
√

3

8− 3
√

3
≈ 1.85322
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Thus, we yield

R(N(P )) ≤ F (N(P )) ≤ 4 for N(P ) ≥ 2. (4.2)

We may conclude
|SP (T )|
|SP (T ∗)| ≤ 4 for N(P ) ≥ 2. (4.3)

For N(P ) = 1 the optimum needs at least one scan, we place at most 2 scans.

Theorem 10. There exists a 4-approximation for the MWPDV milling for
a circular visibility range with r = 1 for a rectilinear grid polygon P .

Proof. With Lemmas 3 and 4 we have:

t(T ) = c · |S(T )|+ L(T )

≤ c · 4 · |S(T ∗)|+ 4 · L(T ∗) + 8

= 4 · (c · |S(T ∗)|+ L(T ∗)) + 8

= 4 · t(T ∗) + 8.

4.5 Approximation for General MWPDV
Milling for Circular Scan Range

In this section we present an approximation algorithm for the case of a cir-
cular visibility range r and general polygons. Again, we consider MWPDV
milling. As discussed in Section 4.1.3, even the problem of minimum guard
coverage has no known constant-factor approximation; therefore, we consider
a bounded ratio r/a between visibility range and feature size, i.e., minimum
side length. The approximation is for the case that no starting point is given.

As for the cases presented in Sections 4.3 and 4.4, we construct our ap-
proximation for MWPDV milling in two steps:

1. We construct a set of scan points S(T ) that is within a constant factor
of the number of scan points in a set of minimum cardinality.

2. We construct a tour T that contains all scan points located in 1. and
that is within a constant factor of the length of an optimum milling
tour.
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Again, we start with the second step, and construct a tour. This tour
will then form the basis for the placement of scan points. Just as in the case
with a rectilinear visibility range and rectilinear grid polygons of Section 4.3,
our tour is constructed from three parts.

• A “boundary” part: In Section 4.3 we described tracing δB, causing a
tour length of LδB. Here, we use two“boundary tours”—within distance
of (at most) 1

2
r and (at most) 3

2
r to the boundary. Let these tours be

denoted by T1/2r and T3/2r, with length LT1/2r and LT3/2r , respectively.
Then we have:

LT1/2r + LT3/2r = 2 · LδB ≤ 2 · L(T ∗) (4.4)

(The length of the three tours differs at the vertices: Drawing a line
perpendicular there from T3/2r to T1/2r the Intercept Theorem shows
that the distance to the diagonal through the vertices of all tours on
T1/2r is twice as much as on the boundary tour with distance r to the
boundary.)
The two “boundary” tours allow us to cover a corridor of width 2r with
a bounded number of scans, while (4.4) enables us to bound the tour
length in terms of the optimal length.

• A “strip” part: Again we construct strips for the interior, Pint := P\PδB.
If Pint is nonempty it can be covered by a set of k1 horizontal strips
Str1

i (i = 1, . . . , k1) (with continuous vision those would really allow for
coverage). The y-coordinates of two of these strips differ by multiples
of 2r. We consider another set of k2 strips, Str2

i (i = 1, . . . , k2), shifted

by r. Then, let Ljstr =
∑kj

i=1 LStrji
. Analog to the argument for L∞ scan

range, we have L1
str + L2

str ≤ 2 · L(T ∗).

• A “matching” part: Again, this third and last “matching” part serves
as the element that combines the “boundary” and “strip” parts for a
closed tour. Here, we add two more set of sections:

– The center lines of the strips have a distance of r to the boundary,
thus they do not yet touch T1/2r. Consequently, we add 1/2r to
each center line (on each end). For that purpose, we consider the
matchings as defined in Section 4.3. (Recall the definition: Con-
sider the endpoints of the strips on δBi. Every δBi is partitioned
in two disjoint portions by these endpoints. We denote these por-
tions by M1(δBi) and M2(δBi). Using the shorter of these two
(M∗(δBi)) for every δBi, we obtain for the combined length, LM :
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Figure 4.11: Two scan points with distance
√

3 · r to each other: The dashed lines
indicate a length of r, so, the dash-dotted line has a length of

√
3 · r, the distance of two

scans.

LM ≤ Lstr/2 ≤ LOPT/2.) Because two strips are at least a dis-
tance of r apart, the connection to T1/2r, C(1/2r), costs less than
1/2 · LM ≤ 1/2 · Lstr/2 ≤ L(T ∗)/4.

– Moreover, we consider the above matchings defined on T1/2r and
use the shorter sections of the disjoint parts, (M∗(1/2r)(δBi)), for
every δBi. The Intercept Theorem in combination with the analo-
gously defined sections on T3/2r enables us to give an upper bound
of LM(1/2r)

≤ Lstr ≤ L(T ∗).

Starting on some point on T1/2r, tracing the strips, and the inner “bound-
ary” T3/2r at once when passing it, yields a closed tour. We summarize:

Lemma 5. L(T ) ≤ 21/4 · L(T ∗)

Proof.

L(T ) = LT1/2r + LT3/2r + L1
str + L2

str + LC(1/2r)
+ LM(1/2r)

≤ 2 · L(T ∗) + 2 · L(T ∗) + L(T ∗)/4 + L(T ∗)

= 21/4 · L(T ∗)

Having constructed the tour, we only have to take care of Step 1, that is,
we have to construct a covering set of scan points (that are all located on T
as constructed above).

• For the “boundary” part we place scans with the center points located
on T1/2r and T3/2r in distance

√
3 · r (see Figure 4.11) if possible. How-

ever, at corners we need to place scans, so the minimum width we are
able to cover with the two scans (on both tours) is a.

• For the“strip”part the distance of scans is also
√

3·r on both strip sets,
exactly the distance enabling us to cover a width of r, see Figure 4.11.
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It remains to consider the costs for the scans. Taking scans within a
distance of

√
3·r, we may need the length divided by this value, plus one scan.

We only charge the first part to the strips. The (possible) additional scans are
charged to the “boundary” part, as we have no minimum length of the strips.
So, adding a constant cost would not allow us to stay within a constant factor
of the number of scan points in a set of minimum cardinality. The optimum
cannot cover more than πr2 with one scan. Let Lstr = max(L1

str, L
2
str):

|S(T ∗)| ≥ Lstr
πr/2

|S(T )| ≤ 2Lstr√
3 · r

⇒ |S(T )|
|S(T ∗)| ≤

2Lstr√
3 · r

· πr/2
Lstr

=
π√
3

(4.5)

Finally, we consider the “boundary”. We assume LδB ≥ 1. Hence:

|S(T ∗)| ≥ LδB
πr/2

.

We may need to scan within a distance of a—on two strips—, need additional
scans and have to charge the scans from the “strip” part, hence, this yields:

|S(T )| ≤ LδB
a/2

+ 1 +
LδB
r
.

Altogether (“boundary” and “strips”), we have for r ≥ a:

Lemma 6. |S(T )| ≤ |S(T ∗)| · (πr
a

+ πr
2

+ π
2
)

So, when we combine Lemmas 5 and 6, we obtain our approximation
factor.

Theorem 11. A polygon P allows a MWPDV solution that contains at most
a cost of max(21

4
, πr
a

+ πr
2

+ π
2
) times the cost of an optimum MWPDV solution

(for r ≥ a).

Note that Theorem 11 covers the case from Section 4.4; however, instead
of the factor 4 originated by the adaption to this special case, this yields a
factor of 2 · π.
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4.6 Conclusion

We studied the problem of guarding a polygon P with a mobile watchman
with limited and discrete vision that has to stay within the polygon at all
times.

We showed that even the simplest variants of MWPDV milling are NP-
hard. Moreover, we presented approximation algorithms for different variants
of the problem. All of these algorithms also apply for the bicriteria version,
that is, considering tour and set of scan points separately. We gave a 2.5-
approximation method for a watchman with uniform rectilinear visibility
range in rectilinear grid polygons. For the surveillance of rectilinear grid
polygons with a watchman with uniform circular visibility range we presented
a 4-approximation. Finally, for a watchman with circular visibility range r
monitoring general polygons we presented an approximation algorithm with
factor of max(21

4
, πr
a

+ πr
2

+ π
2
), a constant factor for a bounded ratio of r/a.

This approximation is based on ideas of the simple 2.5-approximation. The
basic concept we used for the approximation algorithms is a tour construction
of the “boundary area” of the polygon, and a construction of an internal tour,
that are then combined for a connected tour. Polygon covering scan points
are located such that they can be visited by the constructed tours.

Note that for the lawn mowing variant of the MWPDV with combined
cost (that is, not for the bicriteria version) Mitchell [FMS09] gave a PTAS
based on guillotine subdivisions. This PTAS makes use of a fixed ratio be-
tween scan cost and travel cost.

As the factor for general polygons depends on r/a there is still room for
improvement. In particular, it would be desirable to achieve, if not an ap-
proximation factor independent of r/a, a factor that depends on log(r/a). In
general, the location of scan points includes a geometric hitting set problem.
However, the objects that need to be covered are for the general case not
r-admissible (for which Mustafa and Ray [MR09] gave a PTAS), not “fat”
as defined by Chan [Cha03], do not fulfill the locality condition (another
geometric setting for which Mustafa and Ray [MR09] presented a PTAS)
and the VC-dimension does not allow for ε-nets of size O(1/ε) (see Haussler
and Welzl [HW86]) for which a constant-factor approximation for the hitting
set problem presented by Brönnimann and Goodrich [BG94] exists. Hence,
gaining independence of the factor of r/a is not likely.
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CHAPTER 5

Exploration and Triangulation with a Swarm of Robots

This chapter deals with the problem of surveying a polygon with a swarm
of mobile agents with limited communication range. The agents have to
explore the yet uncovered polygon and decide on locations that allow for
a triangulated network, with edge lengths restriction, covering the entire
region. We seek for a minimal number of agents necessary for this task. Or,
if only a limited of agents is available, we aim at maximizing the covered
subpolygon.

5.1 Problem Description

Exploring an environment with a single robot, for example, by looking for a
tour for the robot along which every point in the environment becomes visible
at least once, is a problem we described in the last chapter. A solution to
this watchman route problem allows for visibility coverage of all points in
the environment, but a single point may be perceived at only one point in
time. So, a possible goal is to ensure guarding at all times—like stated in the
art gallery problem for mostly stationary guards, another classical scenario
discussed in Chapter 4. These guards permanently monitor the region, but
interaction and communication between the single guards is not taken into
account. Moreover, the art gallery problem is not concerned with the process
of positioning the guards at the chosen locations.

The capabilities of autonomous robots have improved in recent years.
Moreover, the price of commercially available platforms (as the iRobot Room-
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bas we use, depicted in Figure 5.1) decreased to a point that makes it inter-
esting to consider exploration and guarding with a robot swarm. Though,
these agents, the single robots, have only limited capabilities.

If we think of a static sensor network, used, for example, to track people
or events, that needs to react to different scenarios by adding further mobile
sensors, we want to keep the network properties. Thus, if we use sensor nodes
attached to mobile robots, as shown in Figure 5.1, we aim at exploring a yet
uncovered environment. But the coverage of already explored area should be
permanent. Moreover, sensor nodes typically have a limited communication
range. Consequently, if we want to assure a connected network, we cannot
just focus on finding positions that cover the entire region (with a limited
range of perception in contrast to most art gallery results), but the location
process must maintain communication edges.

Figure 5.1: A robot swarm consisting of iRobot Roombas.

Thus, as in other classical exploration or guarding problems, we are given
a known or unknown polygonal region P . The polygon needs to be fully
monitored by a swarm of robots. For this monitoring task we want to use
a well connected network that can perform the described location services.
In particular, we ask for a triangulated network. Hence, agents with only
limited input information, and without global coordinates, have to explore
the environment and find positions that allow for a triangulated network
that covers the entire area. Having only local information, the computation
is carried out decentralized and by local cooperation.

If the task is to fully explore a region, a natural objective is the mini-
mization of the number of robots. On the other hand, if we are equipped
with only a limited number, `, of robots, we aim at maximizing the subregion
covered by the triangulation.
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5.1.1 Problem Statement

We are given a polygon, P , that may be a polygon with holes. Moreover,
we are given a starting point, s, on the boundary of the yet unexplored
(connected) subpolygon Pu ⊆ P . For ease of description we consider only
this subpolygon as our polygon and denote it by P .

Every robot in the swarm has a (circular) communication range r. Within
this range, perception of and communication with other robots is possible.
For the ease of description we assume that r is equal to 1 (and scale the
polygon accordingly). We use the terms robots and relays synonymously.

The Minimum Relay Triangulation Problem (MRTP) asks for a triangu-
lation that covers P with edge length at most 1. The objective is to minimize
the number of relays. The triangulation must not contain edges crossing the
boundary of P , reflecting the impossibility of communicating through walls.
Thus, the triangulation contains all vertices of P , plus intermediate points.
The latter are needed as edges in the triangulation must not have a length
exceeding r = 1. The formal statement for the MRTP is: Given a polygon P
and a starting point s ∈ P , determine a minimum-cardinality set R (s ∈ R)
of relays in P such that there exists a triangulation of R that fully covers P
and with edge lengths at most 1.

Given a polygon P and ` relays, the Maximum Area Triangulation Prob-
lem (MATP) asks for a connected triangulation of a subarea within P that
maximizes the covered area. Hence, given a polygon P , a starting point
s ∈ P and ` relays, the MATP asks for a set R (s ∈ R) of |R| = ` relays in
P , such that there exists a triangulation of R with edge lengths at most 1
that maximizes the covered area.

For the online versions (OMRTP and OMATP), the polygon P is un-
known. Each relay moves through the polygon and decides on a new location
while still within range of other relays. Once it has decided for a position
and stopped, it will not move anymore and becomes part of the static trian-
gulation. Such it allows for other relays to extend the explored area and the
triangulation. This restriction is motivated by our application: in particular,
if the area that we explore is huge, we wish to be able to begin location ser-
vices in the triangulation that is already fixed. That is, even if the polygon
is not yet fully explored—which may take a long time in case of large areas—
the extended network can be used. More precisely, also for the OMRTP we
are given a polygon P and a starting point s ∈ P . We aim at computing
a minimum-cardinality set R (s ∈ R) of relays in P such that there exists
a triangulation of R that fully covers P and with edge lengths at most 1.
The relays move into the polygon, starting from s. A relay extending the
yet established subset R′ ⊂ R must stay within a distance of 1 to at least
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one relay r ∈ R′. Once it fixed its position it will not move again. The
OMATP is defined analogously. No non-triangle edges are allowed in the
final construction. For the OMRTP we let ROPT denote the number of relays
used by the optimum, for the OMATP AOPT denotes the area covered by the
optimum—both for the optimal triangulation TOPT.

Organization of this Chapter. The remainder of the current section
presents related work. In Section 5.2 we show that both the MRTP and the
MATP are NP-hard. In Section 5.3 we follow the question which competitive
ratio a strategy for the OMRTP can achieve. We show a lower bound of 6/5
for the competitive ratio of any online strategy. In addition, we present
an algorithm that achieves a competitive ratio of 3. Moreover, we consider
online strategies for the OMATP (Section 5.4). It turns out that no strategy
can achieve a constant competitive ratio.

The results in this chapter are based on work together with Sándor
P. Fekete, Tom Kamphans, Alexander Kröller, and Joseph S. B. Mitchell
[FKK+11].

5.1.2 Related Work

As described in the beginning of this section, the MRTP and the MATP
are both related to online exploration problems (in particular, with watch-
men with limited vision) and to the placement of stationary guards, the art
gallery problem. We discussed these problems in the preceding chapter, see
Section 4.1.2 for a detailed overview on related work.

We aim at obtaining a triangulated network. In contrast to classical tri-
angulation problems that ask for a triangulation of all vertices of a polygon
(possibly allowing some additional Steiner points), we allow for triangles of a
certain type (all edges have length ≤ 1) only. Triangulations with shape con-
straints for the triangles and the use of Steiner points are considered for Mesh
generation. Though, the constraints differ from the ones we impose. For both
MRTP and MATP we intend to place relays to obtain a connected network.
In contrast the relay placement problem asks for locating relays (with limited
communication range) such that a given set of sensors is connected via relay
paths.

If we focus on distributing the robots of the swarm over the entire envi-
ronment, we face a dispersion problem.

Finally, for the MATP we are equipped with a certain number of relays
and want to cover as much area as possible. That is, we are given a certain
budget and need to optimize the area collected. This is related to other opti-
mization problems with a hard limit on the cost, especially the orienteering
problem that asks for a limited length tour among a subset of points with
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maximal reward. Because we are given a starting point, in particular the
rooted orienteering problem with a given start (or root) node is of interest.

Another problem in this context of problems with a given budget is the
search for a maximum area (or perimeter) convex k-gon using k out of n
given points. Related tasks refer to enclosing a subset of a given set of
reward-labeled objects with a closed curve, such that the enclosure’s value
(depending on enclosed points rewards and the cost for the curve) is maxi-
mized. These problems are called geometric knapsack problems.

Triangulation. Classical triangulation problems ask for a triangulation
that includes all vertices of a polygon, but without any restriction on the
edge length, see O’Rourke [O’R87] and de Berg et al. [dBCvKO08] for an
overview. That is, in contrast to the limited edge length (given by the relay’s
communication range) we face, the triangulation may contain any edge that is
fully contained in the given polygon. For simple polygons, Chazelle [Cha91]
presented a linear time triangulation algorithm. Variants of the problem
ask, for example, for a triangulation that minimizes the sum of edge lengths.
Mulzer and Rote [MR08] proved the decision version of this problem to be
NP-hard.

Meshing. Meshing is an essential preprocessing step for the finite ele-
ment method. This method is used for approximating continuous problems
by subdividing the given domain into a mesh of elements and approximating
the given function by a piecewise polynomial on these elements, see Epp-
stein [Epp01] for an overview on meshing. Meshing is the process of parti-
tioning the given domain into simple cells, the elements, of a certain kind,
for example, triangles or quadrilaterals. The focus is on the approximation
property. Thus, the mesh must contain the entire region. But, there may be
parts of the domain with a more complicated solution than others, requiring
a finer mesh in this regions in order to guarantee an acceptable approxi-
mation. Moreover, the number of elements, that is for us the number of
triangles, should not be too large. The number of elements influences the
solution time for the approximation step. Finally, the triangles should fulfill
certain shape requirements. In general, small and obtuse angles should be
avoided. Allowing for triangles with such angles would reduce the accuracy
of the numerical solution. Bern and Eppstein [BE92] gave a survey on mesh
generation. They discussed triangulation with and without Steiner points
and with and without optimality criteria. For non-Steiner triangulations the
focus is on the triangles’ shape. So, quality measures rely on their angles,
edge lengths, heights or areas. The criteria is then the sum, maximum or
minimum of the measure over all triangles. For triangulations with Steiner
points that either limit the number of Steiner points and then ask for an
optimal triangulation, or that minimize the number of Steiner points for a
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given criterion, approximation algorithms are presented. Criteria of interest
include the maximization of the minimum angle, avoidance of large angles,
the maximization of the minimum height and the minimization of the total
edge length.

Algorithms surveyed by Bern and Eppstein include a technique by Chew
[Che89] that guarantees all angles in the triangulation to be between 30 and
120 degrees and the edge lengths to be between h and 2h (with h being
a parameter that can be chosen by the user). Moreover, an algorithm for
approximating the minimum weight Steiner triangulation, that was given by
Eppstein [Epp92].

Bern et al. [BEG94] presented triangulations with triangles of bounded
aspect ratio and triangulations with triangles without obtuse angles, such
that the number of triangles is within a constant of the optimal number.

In addition to these algorithms there exist heuristically obtained meshes,
that do not allow for a guaranteed quality (see Bern and Eppstein [BE92] for
a brief overview).

In general, in case the number is considered, the focus in meshing is on
the number of triangles, rather than on the number of relays. Moreover, the
resulting triangles for our problems may have arbitrary angles, aspect ratio,
height and also the total edge length sum of triangles is not in the focus of
our interest. Hence, while the use of Steiner points and the interest in a
special shape of the triangles is similar, the optimization criteria for mesh
generation and for the MRTP and the MATP differ. To the best of our
knowledge the optimization criteria we consider have not been treated for a
meshing problem.

Relay Placement. Given a set of sensors, the network should be con-
nected by placing additional nodes, relays. Sensors and relays have a limited
communication range. The goal is to use as few relays as possible. In con-
trast to the MRTP and the MATP that ask for a triangulated structure,
for the relay placement problem the sensors need to be connected via paths
(those connecting paths may be allowed to contain sensors (one-tier version)
or not (two-tier version)). This problem has been considered by Efrat et
al. [EFG+08] who presented a 3.11-approximation for the one-tier version
and a PTAS for the two-tier version.

Dispersion. The problem of dispersing a swarm of robots into a cellular
environment was considered by Hsiang et al. [HAB+02, HAB+03]. They aim
for minimizing the time until each cell of the environment is occupied by a
robot.

Dispersing a swarm of robot has also been considered from a practical
point of view. Such a practical dispersion problem was, for example, solved
by McLurkin and Smith [MS07], who dispersed a group of autonomous mobile
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robots.

Orienteering. Consider a graph with length on edges and rewards on
vertices. Moreover, the explorer is provided with a hard limit on the cost,
the sum of length of traversed edges. One might think of a limited battery.
In the orienteering problem, the goal is to find a path or a tour or a tree
that does not exceed the cost limit and that maximizes the total collected
reward. For the rooted orienteering problem a start point is given. Arkin et
al. [AMN98] were the first who presented constant-factor approximations for
the rooted orienteering problem for the special case of points in the plane.
Thus, their approximation results uses the underlying geometry. The results
are based on m-guillotine subdivisions. For the general problem Blum et
al. [BCK+07] gave a constant-factor approximation algorithm.

A related problem, the k-MST problem was considered by Awerbuch et
al. [AABV98]. This problem asks for a tree that spans k out of n vertices in
a graph, such that the total cost of the tree is minimized.

Geometric Knapsack Problems. The problem of finding a maximum
area (or maximum perimeter) convex k-gon using k out of n given points
was considered by Boyce et al. [BDDG82]. Here the limit is also—as in the
MATP—on the number of points, and the area is to be maximized. But,
the points to choose from are given. Boyce et al. presented a linear space
and O(kn lg n+n lg2 n) time algorithm for this problem. Actually, all points
selected for the k-gon lie on the convex hull of the point set, for both the
area and perimeter version. The statement of geometric knapsack problems
is more general: A subset of given objects, each with a reward, should be
enclosed by a closed curve (packed in a “knapsack”), such that a constraint
on the knapsack’s capacity is not violated. The objects can be points, lines,
polygons or the like. Arkin et al. [AKM93] considered the problem with the
capacity to be defined as the curve’s perimeter or area. There exist variants
of the problem with a given (finite) upper bound on the capacity. For other
variants the capacity is unlimited, but each unit of capacity infers a certain
cost. Arkin et al. showed that for the case of rewards that are allowed to be
negative, and for the case of an upper bound on the perimeter or area, the
problems are NP-hard. For the variant with a cost caused by each curve unit
(but without an upper bound on its length) they presented polynomial time
algorithms for different object types. For all these variants the optimal en-
closure is convex or, for example, for polygonal objects, geodesically convex.
So while these problems also treat the connection between covered area and
number of points, the non-convexity of the enclosed area for MATP as well
as the not predefined objects sets clearly change the problems structure.
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v1 v2 v3 v4 v5 v6 v7

Figure 5.2: An example for a rectilinear configuration of the planar 3SAT.

5.2 NP-Hardness

In this section we show that MRTP and MATP are NP-hard.

Theorem 12. The Minimum Relay Triangulation Problem (MRTP) is NP-
hard, even without a discrete set of candidate locations.

Proof. The proof is again based on a reduction of the NP-hard problem
Planar 3SAT, a special case of 3SAT in which the variable-clause incidence
graph H is planar. In particular, there is a rectilinear embedding of H where
variables v1, . . . , vn lie on a straight line and the clauses are arranged above
and below them as shown in Figure 5.2; see Knuth and Raghunathan [KR92].

We will turn this embedding into a polygon: We represent the variables,
clauses and edges by polygonal pieces. A sketch of this transformation can
be seen in Figure 5.3, the polygonal pieces are here depicted as lines with
bold lines for the edges; the clause gadget is indicated in green.

An example for the clause component is given in Figure 5.4: The edge
corridors, which we will describe later, of three variables end in the triangular
gadget. The boundary is shown in black; all other lines are used only to
highlight certain distances. The light gray triangle has a side length of (1 +
ε), the three dashed triangles all have side length 1. A relay placement
corresponding to a truth setting that satisfies the clause (i.e., a setting of
“true” if vi is in the clause, a setting of “false” if ¬vi appears in the clause) is
indicated in blue, a setting not satisfying the clause in red. The red circles
are unit circles depicting the range in which the setting that does not satisfy
the clause is able to establish edges. For the zigzagged boundary, the relays
at the vertices have distance less than 1 (i.e., the distance between v1 and v2
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v1 v2 v3

v1 v2 v3

40◦

Figure 5.3: Sketch of the transformation from the rectilinear configuration of planar
3SAT: a clause with the three variables v1, v2, v3 (v1 ∨ v2 ∨¬v3). The polygonal pieces are
here shown as lines; with bold lines for the edges, and the clause gadget is indicated in
green.

is less than 1, as is the distance between v3 and v4 and the distance between
v5 and v6); thus, an additional relay is needed only between the last relay
from the corridor (blue or red) and the next vertex (of the connection to
a corridor relating to a different variable), for example, between v2 and p3

or p4—yielding a total of 3 relays. Consequently, we need to consider the
relays required in the component’s interior. In case no variable satisfies the
clause, interior relays inside of each of the red circles need to be added. But
we cannot place a triangle with side length (at most) 1 with vertices inside
these circles. This fact is illustrated in Figure 5.5: The violet lines indicate
the edges of length less than 1 that are directly established by the relays
corresponding to a truth setting not satisfying the clause. For example, the
upper right red relay placed at p4 cannot connect with the (light green) relay
at v4. Moreover, this light green relay at v4 cannot be connected to any
relay placed on the same boundary edge as the red relay. Hence, 3 additional
interior relays are not sufficient for a complete triangulation; that is, in case
no variable satisfies the clause, 4 interior relays are required for the clause
component.

For the case that at least one variable satisfies the clause, see Figure 5.6,
with relays placed at p1, p4 and p6: The relays relating to the corners of one
of the dashed inner triangles, here the pink one, at r1, r2 and r3, are sufficient
to establish a complete triangulation. In case more than one variable satisfies
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1

v1

v2 p3 p4

v3
v4

p5

p6

v5

v6

p1

p2

Figure 5.4: The polygonal piece for a clause.
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1

v1

v2 p3 p4

p1

p2

v3
v4

p5

p6

v5

v6

Figure 5.5: The polygonal piece for a clause. The violet lines indicate the edges estab-
lished from the relay positions corresponding to variables not satisfying the clause.
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1

v1

v2 p3
p4

p1

p2

p5

p6

v4
v3

v6

v5

r1 r2

r3

Figure 5.6: The polygonal piece for a clause. An exemplary truth setting is highlighted
in violet: The variable corresponding to the upper left corridor satisfies the clause, with
a relay placed at p1, the other two variables do not (relays placed at p4 and p6). The
resulting triangulation is shown with violet lines.
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1

1

p1 p2 p3 p4 p5 p6 p7 p8

Figure 5.7: The polygonal piece for the edges.

the clause, such an interior triangulation is obviously still possible. Thus, in
case at least one variable satisfies the clause, 3 interior relays are sufficient
for the clause component.

An example for the edge component is given in Figure 5.7. The corridor
is bounded by a straight line on one side and a zigzagg line on the other.
The zigzagg line is constructed as follows: We place vertices in distance 1
from each other on a line parallel to the straight boundary of the corridor
in distance 1

2
. Between those vertices we place “peak” vertices in distance at

least 1 from the parallel line. The relays placed on the vertices of the zigzagg
boundary (indicated in black) suffice to triangulate the peaks. On the long
edge of the boundary, relays can be placed in distance of exactly 1 (such
that the distances to both lower peak relays is also less than 1 as indicated
by the red and blue lines). Thus, considering the edge from left to right, a
“pushed” relay (i.e., a placement of relays of distance 1 on the straight line)
that starts further inside the corridor can be “pushed” further to the right
than a “pushed” relay initially located more to the left. In our construction,
we will push the truth setting satisfying the clause further in the corridor,
and in the end further into the clause component. (Consequently, considering
Figure 5.7, we see that a relay located at the leftmost red point p1 allows
only for a location of the fourth relay on the rightmost red point p7. While,
starting with a relay located at the leftmost blue point p2, the fourth relay
may be positioned on the rightmost blue point p8.)

When considering the overview of the construction in Figure 5.3 we ob-
serve that it is not sufficient to have one straight corridor starting at the
variable component and ending at the clause component, but we need to be
able:
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1. to make 45◦-bends with these corridors (in the direction of the triangles)
in order to be able to connect to the corridors in case of a negated
variable (we need to bend the corridors by 180◦) and

2. to make 40◦-bends with these corridors (in the direction of the triangles)–
we need to bend the corridors by 120◦–and

3. to shorten and to prolong the distances in the triangular structure and

4. to shorten and to prolong the triangular structure.

In order to do so, we will demonstrate the constructions and consider feasible
distances (e.g., of a point that is to be “pushed” through a corridor to the
interval bounds determined by the triangle relays). We will see that there
are distances that are feasible for the entire construction.

We start with the third item: shortening or prolonging the triangular
structure and distances in this structure. Let dA be the initial distance of
points according to the two truth settings; we want to end up with a distance
of d. The general construction of such an extension/shortening-piece is shown
in Figure 5.8, the resulting triangulation for both truth settings is given
in Figure 5.9. The left blue point at p2, corresponding to a truth setting
satisfying the clause, allows for an edge to the left upper vertex v2 (denoted
by a green cross). In contrast, using the red point at p1 (corresponding to a
truth setting not satisfying the clause) an additional relay on the left edge
to this vertex v2 is needed. As we may spend an equal number of relays, the
clause-satisfying setting allows for an additional relay on the edge incident to
the second upper vertex (v3, v4) (highlighted in yellow), enabling a position
for the rightmost blue point at p4 more to the right than for the rightmost
red point at p3.

Given this general construction, we need to consider feasible distances.
See Figure 5.10: For the left part (Figure 5.10 (a)) with given distances dA
in between the two points p1 and p2 corresponding to the different truth
settings and 1−dl as the horizontal distance from the point corresponding to
the truth setting not satisfying the clause, p2, to the left border of a triangular
structure of length 1, p0, the feasibility constraint is `x < 1. We construct
the intersection point, pint1, of the two circles of radius 1 around p2 (blue)
and around v1 (black). Then, we draw a line from pint1 to v1, the last vertex
of the left triangular structure. The distance from v1 to the intersection of
the drawn line with a circle of radius 1 around p1 is defined as `x. Thus,
starting with a relay at p1, corresponding to a truth setting not satisfying
the clause, an additional relay has to be placed along that line; starting with
a relay at p2 a triangle including pint1 = v2 can be constructed.
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≤ 1

dA d

v1

v2 v3

v4

p1 p3p2 p4

Figure 5.8: Construction for changing the distance of the two points corresponding to
the two truth settings (blue and red) from dA to d.

≤ 1
v1

v2 v3

v4

p1 p3p2 p4

Figure 5.9: The resulting triangulation for the polygonal piece from Figure 5.8.
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Using the notation from Figure 5.10 (a), we have:

a =

√
1

4
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1

4
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2
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α = arcsin(a · sin(β + γ)) (5.3)

δ = π − α− β − γ (5.4)
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For the right part (Figure 5.10 (b)) with given distances of d in between p3

and p4 (the two points corresponding to the different truth settings) and dr as
the horizontal distance from p4 to the right border of a triangular structure of
length 1, pr, the feasibility constraint is ` ≤ 1: We construct the intersection
point, pint2, of the two circles of radius 1 around p3 and around the central
point pm (in distance 1 to p4, the point corresponding to a clause satisfying
truth setting). Then, we draw a line from pint2 to the first vertex of the right
triangular structure, v4. ` is the length of this line. For the truth setting
that does not satisfy the clause, we already used the additional relay for the
triangulation to the left. Thus, the red point at p3 is the rightmost feasible
location for another relay in this case. For the truth setting satisfying the
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Figure 5.10: (a) `x < 1. (b) ` < 1.

clause, we may spend an additional relay along the constructed line, allowing
for a relay positioning at the rightmost blue point p4 (within distance 1 to
the central point pm).

Using the notation from Figure 5.10 (b), we have:
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1

2

√
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√
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4
+ (d+ dr)2 (5.7)
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γ = π − α− β (5.9)

`2 = 12 + g2 − 2 · g · cos(g) (5.10)

Thus, the feasibility constraint is:
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Moreover, we have to ensure that we can bend the corridors by 40◦ and
45◦. We start with a 45◦-bend of the corridors. The general construction
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d45
drK

d dr1− d− dr

45◦

22.5◦v1

p1 p2

p3
p4pc

pb

Figure 5.11: Construction of a 45◦-bend of a corridor.

is shown in Figure 5.11. We start with a red point and a blue point, at p1

and p2, corresponding to a truth setting not satisfying the clause and a truth
setting satisfying the clause again, respectively. Given distances d and dr,
we draw a line with a slope of 22.5◦ from the last vertex of the triangular
structure, v1. Consider the two points where circles of radius 1 around v1

and around p1 (depicted in grey and red) intersect the line of slope 22.5◦.
From the center point between these points, pc, we imagine an orthogonal line
(shown in dark green). At the point where this line meets the bottom edge,
pb, we construct a 45◦-bend of the boundary. The resulting triangulations for
both truth settings is indicated in Figure 5.12 (notice that the second blue
point p4 is not located on the blue circle but within distance 1 to the last
vertex of the triangular structure).

The location of the red point is feasible for

1− d− dr < cos
(π

8

)
−
√

1−
(
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(π

8

)
+

1

2

)2

(5.12)

(For x = 1 we have 1−d−dr = cos
(
π
8

)
−
√

1−
(
sin
(
π
8

)
+ 1

2

)2
.) The location

of the blue point is feasible for
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Figure 5.12: 45◦-bend with labels for angles etc. which allow for the computation of
the distances.
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π
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)2
and

(c2) 1− dr ≤
√
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In order to have a feasible input for the 45◦-bend, which we may con-
struct using the polygonal piece for extending or shortening the distances
(Figure 5.8), we search for a pair (d, dr) meeting conditions (5.11), (5.12),
(c1) and (c2). The tuple (d, dr) = (0.45, 0.15) is such a point. As we have
continuous functions, there is an ε-neighborhood around this point that is
feasible.

So, the last thing we need to consider regarding the corridors are the
distances d45 and drK (as defined in Figure 5.12). The resulting question
is: Is there a feasible input to the bend that produces an output that is in
turn a feasible input for the extension/shortening-piece. We can determine
d45 and drK in dependence of (d, dr). As lx[d45(0.45, 0.15), drK (0.45, 0.15)] ≈
0.980439 < 1 such a feasible input with a feasible ε-neighborhood exists.

Analog computations yield the feasiblilty of 40◦-bends of the corridors
(see Figure 5.13). Note that, for example, 30◦-bends cannot be constructed
(which would allow for both the necessary 120◦ and 180◦ bends).
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Figure 5.13: Construction of a 40◦-bend of a corridor.

Up till now we changed the distances in the triangular structure. We need
to make sure that we may use the same input and output distances while
shortening or extending the distance between the triangles–enabling us to
give the overall construction. Consider Figure 5.14: Using a feasible setup
(e.g., d = dA = 1

4
, dr = 1

4
), the central point, pm, may be located anywhere

within a distance dc with d < dc ≤ 1 (on the green line). Possibly using
several of these constructions, we may obtain any extension or shortening.

Finally, we need to consider the variable component. An example is given
in Figure 5.15. The (horizontal) baseline of the construction is slightly longer
than 1. This baseline is depicted in bold in the upper right of Figure 5.15.
Vertical edges are attached. The vertices at the ends of these vertical edges
may be reached only by a triangulation starting with a relay left or right
from the center of the baseline. See the dark gray dashed and the light gray
triangulation in Figure 5.15: The light gray triangulation needs two relays
on the left vertical edge, and three on the right one, the dark gray one vice
versa. In the same distance as started, that is, as placed on the baseline,
a dark gray and a light gray point is pushed into the horizontal polygonal
piece. The width of this horizontal polygonal piece is determined by the
vertical distance of the pushed points to the vertices plus 1

2
. Here again the

construction is such that the dark gray point ends up to the right of the light
gray point in both attached vertical polygonal pieces. (In Figure 5.15 only
the left of the two vertical pieces that may be attached to the first vertical
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dA < dc ≤ 1
p1 p3p2 p4pm

Figure 5.14: Polygonal piece for changing the distance between the triangles.

polygonal piece with the baseline is shown.) The light gray dotted lines in-
dicate the triangulations in case a polygonal piece is closed, such that both
triangulations, corresponding to a truth setting satisfying the clause and a
truth setting not satisfying the clause, need the same number of relays. Let
us consider variable vi: In case vi appears in a clause, an edge corridor is
attached at the lower side of one of the vertical polygonal pieces, as in the
green ellipse in Figure 5.15. Thus, the dark gray point is “pushed” further
into the edge corridor. If ¬vi appears in the clause, an edge corridor is at-
tached at the upper side of one of the vertical polygonal pieces, as in the blue
ellipse in Figure 5.15. Thus, the light gray point is “pushed” further into the
edge corridor. For each horizontal polygonal piece, we increase the number of
vertical polygonal pieces that allow for a connection of an edge corridor. Con-
sequently, this construction allows for the connection of an arbitrary number
of edge corridors leading to the corresponding clause gadgets. A feasible con-
figuration is (d, dr) with d+2(1−dr) < 1, e.g., d = 0.1, dr = 0.4 resulting in a
baseline of length 1.1. (For the vertical corridors the corresponding mirrored
triangulation is also feasible.)

Finally, we check that the input distance for the clause gadget (Figure 5.4)
is a feasible output of our corridor edges. We have l(0.22, 0.25) ≈ 0.957 < 1,
l being a continuous function we thus have a feasible ε-neighborhood around
this point.

Given the components defined above we can compute the parameter k,
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Figure 5.15: The polygonal piece for the variable.
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the number of relays necessary to triangulate the entire resulting polygon P .
k is polynomial in the number of vertices of H and part of the input. Finally,
we need to have a look at the coordinates: In the variable gadgets and within
the edge corridors up to the first 40◦-bend, we have rational coordinates (in
the variable gadgets we did choose rational coordinates above, in the corridors
we keep distances of 1 along the x-axis). Within the structure surrounding
the clause gadget (which is the same for all clauses), no more than 7 bends
appear, thus we may perturb the coordinates by an ε in order to have rational
coordinates, such that there is an error in the distances between the points
corresponding to the different truth settings. This error is propagated; but,
having only O(1) such changes this error can be kept below any constant.

5.3 Online Minimum Relay Triangulation

In Section 5.2 we analyzed the complexity of MRTP and MATP—we proved
both the MRTP and the MATP to be NP-hard. So, we have a classification
of the hardness of the offline problem. But, in particular for the application,
our focus is on the online variants rather than the offline variants. We intend
to expand a given sensor network as a reaction to a new situation. It is likely
that we will not be equipped with a complete map of the new environment.
Thus, in this section we consider the OMRTP, and we study the OMATP in
Section 5.4. We establish a lower bound of 6/5 on the competitive ratio for
any online strategy for the OMRTP and we present a 3-competitive online
algorithm for the OMRTP. Note that the online strategy also provides a
3-approximation algorithm.

5.3.1 Lower Bound

For the lower bound we use a polygonal corridor of width 3/4. For a complete
triangulation, relays must be placed at the vertices, i.e., the position of the
first two relays is fixed.

In case the algorithm places the next relay on the right boundary, the
polygonal corridor will turn out to look like in Figure 5.16(a). We need
to determine the number of relays up to the two relays connected by the
dotted edge (in the area indicated by the light gray shape in Figure 5.16),
those build the two fixed relays of the next polygonal piece. The optimum
needs 5 relays. The distance of the relay placed by the algorithm on the
right boundary to the next vertex is larger than 1, thus, the algorithm uses
6 relays, see Figure 5.16(b).
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Figure 5.16: A lower bound for the OMRTP. Black dots indicate polygon vertices, i.e.,
mandatory relays; grey disks indicate an optimal solution, while grey squares indicate
relays placed by an online strategy.

In case the algorithm locates the next relay on the left boundary, the
polygonal corridor turns out to look like in Figure 5.16(c), and the optimum
locates 5 relays, while the algorithm must place 6 relays.

If, on the other hand, the algorithm places the next relay in the center,
the polygonal corridor turns out to look like in Figure 5.16(d), again with an
optimum of 5, and an online solution of 6.

The construction we presented results in the next component connected
in 45◦ to the right. Constructions for a connection within a 45◦ angle to
the left are done analogously (mirrored constructions)—resulting in reflected
components.

The additional relays ensure that a final corridor of 3/4 is achieved again.
Thus, we can iterate the construction. We alternate between the components
shown in Figure 5.16 and the reflected components to avoid a self-overlapping
polygon.

Altogether, we obtain a bound on the competitive ratio for any determin-
istic algorithm for the OMRTP.

Theorem 13. No deterministic algorithm for the online minimum relay tri-
angulation problem can be better than 6

5
-competitive.

5.3.2 Online Triangulation

In this subsection we present our online algorithm for the relay triangulation
problem. For our construction we use two components that we combine into
one triangulation using a third set of relays. The two components are (1) a
placement along P ’s boundary and (2) a triangulation of P ’s interior.
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For (1) we place relays within distance 1 along the boundary and on
vertices; when interior boundaries are encountered they are treated in the
same way. Let bALG be the number of relays used in this step, and bOPT

the number of relays placed on the boundary by an optimal solution. Any
triangulation must establish triangulation edges along all edges of the polygon
P . As the maximum distance of relays that allow for a connecting edge is
r = 1, we conclude

Lemma 7. bALG ≤ bOPT.

For the triangulation of P ’s interior, that is, step 2, we overlay the poly-
gon’s interior with a grid: From the starting point we construct an arbitrarily
oriented triangular unit grid. Whenever we cannot continue this grid but are
able to place a relay with distance 1 to all existing interior relays, we do so
(and resume the grid construction when possible). Let iALG be the number
of relays used in this step.

To achieve an upper bound on iALG, we consider the number of triangles
in an optimal solution.

Lemma 8. For an optimal solution for the MRTP with bOPT relays located on
the boundary and iOPT located in the interior, the number 4OPT of triangles
in an optimal triangulation satisfies 4OPT = 2 · iOPT + bOPT − 2.

Proof. We consider the sum of interior angles. For the boundary we have
π(bOPT−2) as the sum of interior angles. At each interior point an additional
2π occurs. As we have a share of π for each triangle, we obtain

4OPT =
π(bOPT − 2) + iOPT · 2π

π
= 2 · iOPT + bOPT − 2 (5.13)

Knowing the number of optimal triangles, we give a bound on the number
of interior grid relays by comparing them to the triangles.

Lemma 9. iALG ≤ 4OPT.

Proof. We charge the iALG interior grid relays to the 4OPT optimal triangles.
When an interior grid relay is positioned on a point that is shared by k opti-
mal triangles, we charge a cost of 1/k to each of them. Thus, an interior grid
relay located in a triangles’ interior causes a cost of 1 assigned to this trian-
gle. The placement of interior relays in step 2 assures a minimum distance
of 1 between any two interior relays. As optimal triangles have a diameter
of at most 1, a triangle will be charged by more than one relay only if it fea-
tures interior relays on vertices—only on vertices. Moreover, interior relays
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Figure 5.17: We consider the black edge {r1, r2} of a triangulation. The circle po-
sition p1 of the grid is not included. Boundary relays are denoted by black squares,
relays placed in phase (ii) as black circles and relays placed to glue the triangu-
lations by black-and-white squares. The resulting triangulations are indicated by
fine black lines.

are placed strictly in P ’s interior (and not on the boundary). Consequently,
an interior relay placed on an optimal triangle vertex is incident to at least
3 optimal triangles. Hence, also in this case, not more than 3 · 1/3 = 1 is
charged to a single triangle.

To summarize: We charged a cost of at most 1 interior relay to each
optimal triangle.

Having positioned bALG + iALG relays, we are left with the task of assuring
that we combine both placements for a triangulation of the explored region.
Whenever we encounter an untriangulated cell bounded by a number of con-
nections between positioned relays, we use additional relays; let their total
number be cALG. We claim that:

Lemma 10. In total, cALG ≤ bOPT additional relays suffice to ensure an
overall triangulation.

Proof. First note that interior relays of degree 1 can be triangulated without
causing further cost—they can be triangulated establishing edges to bound-
ary relays. (If not, an incident interior relay could be placed, resulting in a
contradiction to degree 1.)

We consider an edge between two relays ({r1, r2}), see Figure 5.17, placed
in (2) on the boundary of a non-triangulated cell. As position p1 was not
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occupied by a robot it must be separated from r1 and r2 by boundary (of P ).
We may not have both semicircles without boundary relays (as we may not
have a line of length less than 1 with both ends outside of both semicircles).
So, w.l.o.g. assume that we have a boundary edge with a relay in the left
semicircle. Then:

(I) If the other relay of this boundary edge is in the right semicircle, then
we have a cell of 4 relays, with one boundary edge for which we need
one more relay, see Figure 5.17(a).

(II) If the other relay is not located in the right semicircle and

a) if p2 is part of the grid, the other relay of the boundary edge is
connected to this, so again we close a cell, for which we need one
relay, having one boundary edge, see Figure 5.17(b).

b) if p2 is not part of the grid and

A) if p3 is in the triangulation, we must have another edge that
separates p2, leaving us with at least two boundary edges
to which we may charge the two necessary relays, see Fig-
ure 5.17(c).

B) if p3 is not in the triangulation we could have placed another
relay with minimum distance 1 to the right black relay (drawn
as a black-gray circle in, see Figure 5.17(d)), again closing the
cell, for which we need one relay.

Altogether, every relay on the boundary gets charged at most once.

Theorem 14. There is a 3-competitive strategy for the online minimum relay
triangulation problem in polygons (even with holes).

Proof.

RALG = bALG + iALG + cALG

≤ bOPT + 2 · iOPT + bOPT − 2 + bOPT

≤ 3 · (iOPT + bOPT)− 2

≤ 3 ·ROPT.
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5.4 Online Maximum Area Triangulation

While we presented a competitive strategy for the OMRTP we prove in this
section that the OMATP does not allow for a competitive algorithm. Recall
that we ask for a connected triangulation.

Theorem 15. There is no competitive algorithm for the Online Maximum
Area Triangulation Problem.

Proof. We construct a polygon in which every online algorithm for the OMATP
covers less than 8√

3
ε of the area that the optimal offline algorithm OPT covers

for any given ε (using ` relays).

We start with two relays located on vertices within a distance 1 from
each other; let those locations be a and b. First, we construct a rectangle
of height 2ε and length 1 above those; see Figure 5.18. On the long side of
this rectangle we connect x corridors of width δ and length 2

√
1− δ2, with

x = d `−2
4
e. We choose δ such that 1

2
· δ · (2

√
1− δ2 +µ) ≤ ε, for some (small)

µ ≥ 0 (then of course A = 1
2
· δ ·
√

1− δ2 ≤ ε for the area of the triangles in
the corridors).

(x − 1) of the x corridors have a small wider structure at the end; see
Figure 5.18 (the total length of those corridors is 2+µ). One of the corridors
of width δ and length 2

√
1− δ2 ends in a polygonal piece with area suffi-

cient for the placement of ` regular triangles; see Figure 5.18 for the entire
construction.

Thus, for every triangle in the ab-rectangle we have an area of A: A ≤
1
2
· 1 · 2ε = ε. Any online algorithm has to choose locations of relays in

the corridors at some point, either exploring corridors one after another or
placing relays in different corridors. For a single corridor 4 robots need to be
placed before it is possible to distinguish the dead ends from the large area.

As we consider an online scenario, the corridor in which an online algo-
rithm ALG will place a 4th relay last will feature the large polygonal piece.
Consequently, ALG places 2 relays at a and b, (x− 1) · 4 relays in the (x− 1)
corridors ending in a small triangle and (` − 2 − (x − 1) · 4) ≤ 4 relays in
the corridor with the large polygonal piece. The optimum constructs one
triangle in the ab-rectangle, two in the corridor, and the rest will be regular
triangles with A =

√
3

4
in the large polygonal piece.

Thus, altogether we have:
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√
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δ + 2 · δ4

Figure 5.18: An example for the polygon construction with x = 11.

AALG ≤ ` · ε (5.14)

AOPT ≥ (`− 7) ·
√

3

4
≥ `

2
·
√

3

4
(` ≥ 14) (5.15)

⇒ AALG

AOPT

<
` · ε
`
2
·
√

3
4

=
8ε√

3
(` ≥ 14) (5.16)

5.5 Conclusion

We studied the problem of monitoring a polygon with a swarm of robots with
limited communication range. The robots start the exploration from a given
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starting point, decide on locations and construct a triangulated network. The
edges in this triangulation must not exceed a length of 1. For the MRTP
the entire polygon is to be covered and we ask for the minimum number of
relays necessary for this task. For the MATP we are equipped with a certain
number of relays and want to maximize the area covered by the established
triangulation.

We gave offline and online results for these problems.
For the online MRTP we proved a lower bound of 6/5 on the compet-

itive ratio of any online algorithm and presented a 3-competitive strategy.
Obviously, there is still gap between the upper and lower bound on the com-
petitive factor. At this point, the bottleneck in our analysis of our strategy
is that we account for boundary, interior and “connection” relays separately.
Consequently, there is still room for improvement: Our analysis might be
improved or there might be more sophisticated strategies.

We showed that the OMATP does not allow for a strategy with a constant
competitive factor. This is due to the requirement of fixing a location during
the exploration process. Thus, changing the basic nature of the problem, and
allowing for a continued movement (while staying connected) might result in
positive results—for the revised problem.

For the offline versions of both problems we gave a NP-hardness proof.
Note that for slightly altered problem statements Mitchell (see [FKK+11])
presented polynomial time approximation schemes based on m-guillotine sub-
divisions. This variant adds two natural assumptions, rooted in the robots’
finite size: The region may be assumed to be free of bottlenecks that are too
narrow for robots, and we may already have a discrete set of candidate relay
locations. On the other hand, if we do not allow for the additional restric-
tions, the 3-competitive strategy that we presented for the OMRTP of course
also gives a 3-approximation algorithm. Consequently, trying to improve this
approximation factor for the general MRTP and giving a constant-factor ap-
proximation algorithm for the MATP without the additional assumptions
could be of interest.



CHAPTER 6

Conclusion

In this thesis we presented results for three different geometric problems
using mobile agents with limited capabilities—in the context of exploration,
guarding and image analysis. We already gave more detailed summaries and
discussed some open problems in Section 3.5, Section 4.6 and Section 5.5.

We considered the problem of extracting certain object attributes from a
given smart pixel image in Chapter 3. This differs from a classical camera
chip as pixels may perform simple computations, communicate with direct
neighbors and react to events. We showed how the desired attributes, the
object’s size, its center of gravity and its orientation, can be expressed as
moments (considering the occupied pixels as a point set in R2). We used the
pixels to mimic mobile agents, messages sent from a pixel to a neighboring
pixel. Moreover, we showed how a weight assignment to object pixels and
a consumption of these weights by agents, can be performed using simple
computations only and allows for the computation of the moments. We
presented an algorithm that ensures these computations and proved a linear
runtime. The algorithm can handle arbitrarily intertwined objects in the
given picture.

In Chapter 4 we presented the Myopic Watchman Problem with Discrete
Vision. This problem imposes two additional constraints on the classical
watchman route problem: The watchman has a limited range of visibility
(scan range) and may perceive the environment at discrete points along its
route only. Consequently, the cost of a tour is given as a linear combina-
tion of tour length and number of scan points. We prove that the additional
constraints result in an NP-hard problem. We presented approximation al-
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gorithms for different variants. We achieved a 2.5- and 4-approximation
strategy in rectilinear grid polygons for explorers with a unit L∞ and L2

scan range, respectively. For general polygons, and L2 scan range we bound
the ratio between scan range r and minimum side length a and presented a
max(21

4
, πr
a

+ πr
2

+ π
2
)-approximation.

The Minimum Relay Triangulation Problem and the Maximum Area Tri-
angulation Problem are studied in Chapter 5. Both problems are based on
the same situation. Relays with a limited communication range should ex-
plore a polygon from a starting point in a connected fashion. The relays
have to decide on their locations resulting in a triangulated network in the
polygon, such that the edge lengths in the triangulation do not exceed the
communication range. The first problem asks for the minimum number of
relays necessary for complete coverage of the polygon. We showed that this
problem is NP-hard. The focus was on the online setting. We gave a lower
bound of 6/5 for the competitive factor of any online strategy and presented
a 3-competitive strategy. This strategy also provides a 3-approximation for
the offline case. The second problem asks for the maximum area that can be
covered using a given number of relays. Also this problem was shown to be
NP-hard. Again, our focus was on online algorithms. But, we proved that
no deterministic algorithm can achieve a constant competitive ratio.
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[Chv74] Vasek Chvátal. A combinatorial theorem in plane geometry.
Journal of Combinatorial Theory, ((B)18):39–41, 1974.

[CJN93] Svante Carlsson, H̊akan Jonsson, and Bengt J. Nilsson. Finding
the shortest watchman route in a simple polygon. In Algorithms
and Computation, 4th International Symposium, ISAAC ’93,
Proceedings, pages 58–67, 1993.

[CN86] Wei-Pang Chin and Simeon Ntafos. Optimum watchman
routes. In SCG ’86: Proceedings of the second annual sym-
posium on Computational geometry, pages 24–33, New York,
NY, USA, 1986. ACM.

[CN91] Wei-Pang Chin and Simeon C. Ntafos. Shortest watchman
routes in simple polygons. Discrete & Computational Geome-
try, 6:9–31, 1991.

[CNN93] Svante Carlsson, Bengt J. Nilsson, and Simeon C. Ntafos. Opti-
mum guard covers and m-watchmen routes for restricted poly-
gons. International Journal on Computational Geometry and
Applications, 3(1):85–105, 1993.

[CR88] Joseph C. Culberson and Robert A. Reckhow. Covering poly-
gons is hard. In 29th Annual Symposium on Foundations of
Computer Science, FOCS ’88, pages 601–611, 1988.

[CSR07] Marcelo C. Couto, Cid C. de Souza, and Pedro J. de Rezende.
An exact and efficient algorithm for the orthogonal art gallery
problem. In SIBGRAPI ’07: Proceedings of the XX Brazil-
ian Symposium on Computer Graphics and Image Processing,
pages 87–94, Washington, DC, USA, 2007. IEEE Computer
Society.

[CV05] Kenneth L. Clarkson and Kasturi Varadarajan. Improved ap-
proximation algorithms for geometric set cover. In SCG ’05:
Proceedings of the 21st annual symposium on Computational
geometry, pages 135–141, New York, NY, USA, 2005. ACM.



142 Bibliography

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark
Overmars. Computational Geometry: Algorithms and Applica-
tions. Springer, 2008.

[DKP98] Xiaotie Deng, Tiko Kameda, and Christos H. Papadimitriou.
How to learn an unknown environment I: The rectilinear case.
Journal of the ACM, 45(2):215–245, 1998.

[DM03] Adrian Dumitrescu and Joseph S. B. Mitchell. Approximation
algorithms for TSP with neighborhoods in the plane. Journal
of Algorithms, 48(1):135–159, 2003.

[EFG+08] Alon Efrat, Sándor P. Fekete, Poornananda R. Gaddehosur,
Joseph S. Mitchell, Valentin Polishchuk, and Jukka Suomela.
Improved approximation algorithms for relay placement. In
Proceedings of the 16th Annual European Symposium on Algo-
rithms, pages 356–367. Springer, 2008.

[EHP06] Alon Efrat and Sariel Har-Peled. Guarding galleries and ter-
rains. Information Processing Letters, 100(6):238 –245, 2006.

[EKM+11] Khaled Elbassioni, Erik Krohn, Domagoj Matijevi&#x0107;,
Juli&#x00e1;n Mestre, and Domagoj &#x0160;everdija. Im-
proved approximations for guarding 1.5-dimensional terrains.
Algorithmica, 60:451–463, June 2011.

[Elk06] Michael Elkin. A faster distributed protocol for constructing
a minimum spanning tree. Journal of Computer and System
Sciences, 72(8):1282 – 1308, 2006.

[Epp92] David Eppstein. Approximating the minimum weight triangu-
lation. In SODA ’92: Proceedings of the third annual ACM-
SIAM symposium on Discrete algorithms, pages 48–57, 1992.

[Epp01] David Eppstein. Global optimization of mesh qual-
ity. http://www.ics.uci.edu/ eppstein/pubs/Epp-IMR-01.pdf,
2001. Tutorial at 10th International Meshing Roundtable.

[ESW01] Stephan Eidenbenz, Christoph Stamm, and Peter Widmayer.
Inapproximability results for guarding polygons and terrains.
Algorithmica, 31(1):79–113, 2001.



Bibliography 143

[FFK+09] Sándor P. Fekete, Dietmar Fey, Marcus Komann, Alexander
Kröller, Marc Reichenbach, and Christiane Schmidt. Dis-
tributed vision with smart pixels. In SCG ’09: Proceedings of
the 25th annual symposium on Computational geometry, pages
257–266, New York, NY, USA, 2009. ACM.

[FHL+04] Dietmar Fey, Lutz Hoppe, Andreas Loos, Michael Förtsch, and
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rectilinear polygons. In Lúıs Caires, Giuseppe Italiano, Lúıs
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