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ARTICLE INFO ABSTRACT

Keywords: Weather affects the work of air traffic controllers, however, for staff scheduling in Remote Tower Centers
ATCO workload (RTCs) it has not been taken into account. We study the impact of various weather phenomena on air traffic
Weather controller (ATCO) taskload through structured interviews with ATCOs. We deduce taskload-driven impact
RTC staff scheduling

factors and the corresponding thresholds for the intensity of the weather phenomena at several Swedish
airports. To account for the uncertainty in the weather prediction, we obtain probabilistic weather data from
Ensemble Prediction Systems (EPSs). Then we adjust our prior Mixed Integer Programming (MIP) model for
RTC staff scheduling to account for uncertain impactful weather occurrences and yield a distribution for the
necessary number of ATCOs for RTC staff scheduling. Our framework can be used for conventional towers as
well.

We quantify the impact of weather by comparing the number of controllers necessary to operate at five
Swedish airports from a remote tower during two example days in 2020, with and without taking weather
events into account. In our calculations we use historical weather and flight data to show that ignoring weather
impact may lead to significant understaffing at a RTC.

1. Introduction

Constructing rosters for ATCOs is a complex problem since a myriad
of legal and operational requirements needs to be taken into account.
ATCO rostering is more complicated than most shift-planning tasks
because of very strict and legally binding regulations (Delgado et al.,
2015): shifts may not be too short or too long, between two shifts
a minimum rest interval must be kept, during a shift an ATCO must
have breaks every so often, etc. Moreover, an ATCO can work at
different airports and must hold an endorsement for each airport.
To maintain such endorsements, controllers are supposed to spend a
specified number of hours working at the corresponding airports. The
number of constraints only increases in remote towers.

The first RTC opened in Sweden in 2015. The Swedish Air Naviga-
tion Service Provider Luftfartsverket (LFV) serves Ornsk6ldsvik Airport,
Sundsvall-Midlanda Airport and Linkoping SAAB Airport from the cen-
ter. In an RTC an ATCO can work in the so-called “multiple” position
(or multiple mode, or multiple operation), when the ATCO monitors

traffic at more than one airport. While currently all service is provided
in single mode (one ATCO controls one airport), multiple operation is
planned in Sweden, as well as in other countries, as it will bring up
significant cost savings. In Europe, usually two or three airports are
considered for the multiple position.

Unions and regulatory bodies require additional safety assessment
before approving multiple mode implementation. In particular, when
assigning airports to ATCOs we need to ensure that no ATCO is con-
fronted with traffic-inherent situations in the multiple airports, which
would lead to an unacceptable workload for the ATCO. Such situations
may stem from simultaneous movements (landings and take-offs) at
two airports, or severe weather conditions in one or both airports
may increase the ATCO’s taskload. Weather affects the work of AT-
COs through increased communication with ground traffic and pilots,
through increased out-of-the-window observation, and through changes
to the arrival and departure routes. For example, during our field
study at Bromma airport tower, we observed the influence of a severe
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weather event on ATCO workload (Josefsson et al., 2020). With 4, 5,
9 and 27 movements during four hours, the average workload rating
(self-assessed by the ATCOs using the adapted Cooper-Harper Scale
from Papenfuss and Peters (2012)) was higher in the first three hours,
during which regular snow sweeping with a convoy of 10-14 vehicles
occurred, than in the final hour with peak traffic.

Weather disturbances have a noticeable influence on ATCOs work-
ing in a conventional tower, and they may have even higher impact
on ATCOs in an RTC, in particular, when an ATCO monitors several
airports simultaneously, possibly with different weather conditions.
The impact of weather on ATCO work is significantly under-researched
and is not taken into account in current operation and planning,
neither in conventional towers nor in RTCs. Moreover, to the best
of our knowledge, no good measures or classifications for weather
impact on ATCOs and their workload exist. This yields a couple of
research questions: How do different weather phenomena impact ATCO
workload (at different airports)? How to quantify the resulting weather-
induced capacity reductions? And how can we integrate this impact in
RTC staff scheduling?

Our work contributes to a safety assessment for multiple mode
by showing that during staff scheduling we can account for weather-
induced increased taskload and ensure that ATCOs do not face safety-
compromising situations. Specifically, we aim to quantify the impact of
weather and integrate it into optimization of ATCO work at RTCs, in
particular, into an automated staff scheduling—thus revealing another
important application area for weather models for aviation. We provide
a proof of concept using historical weather and aircraft movement data.
The goal is to use our approach as a tool to forecast ATCO staffing needs
in RTCs based on weather forecasts.

To fill the research gap on classification of weather impact at
different airports, we interviewed experienced ATCOs working at five
(small) Swedish airports on measurement, incidence, classification and
resulting additional ATCO tasks for various weather phenomena (snow,
low visibility, precipitation, wind, and convective weather). In particu-
lar, we are interested in thresholds for significantly increased taskload
induced by the phenomena. We concentrate on taskload (rather than
workload), which measures the objective demand of a task rather than
the subjective stress experienced during that task (see, e.g., Sudrez
et al., 2014; Josefsson et al., 2018 for the study of objective measures
correlating with workload for en-route traffic and multiple remote
control).

We then aim to integrate the identified influence of weather on the
ATCOs in our prior model for RTC staff scheduling (Josefsson et al.,
2017), while also taking into account the uncertainty in the weather
prediction. Previously, we limited the number of movements per hour
that a single ATCO may handle, and suggested to resolve conflicts
in terms of simultaneous movements at two airports within a 5-min-
interval (Josefsson et al., 2017; Dahlberg et al., 2017). However, we
know that ATCO workload is not a monotone, linear function of the
number of movements: it might stay more or less constant with an
increasing number of movements under normal conditions, but will rise
suddenly in case of unexpected events. Here, we identify occurrence of
a certain strength of a weather phenomenon as an unexpected event
which needs to be taken into account: a conflict between airports
appears not only because of simultaneous movements, but also when
an impactful weather event at one airport demands the full attention
of an ATCO, effectively switching the mode from multiple to single.

Weather conditions have a high impact on the performance of
the air traffic management (ATM) not only in towers, but also in
general (see, e.g., Borsky and Unterberger (2019)). Within SESAR,!
new models for weather forecasts and their integration in planning
problems, e.g., in trajectory planning, have been developed in several
projects (e.g., Anon (2015, 2020-2022,a)). The staple technique for

1 The Single European Sky ATM Research program
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capturing the uncertainty in weather predictions is retrieving prob-
abilistic weather data from an EPS. An EPS quantifies weather un-
certainty by generating a range of weather forecasts, referred to as
members, which represent a sample of the possible states of the actual
weather outcome (World Meteorological Organization, 2012). In our
prior work Josefsson et al. (2020), we used probability distributions
of meteorological parameters from an ensemble weather product to
yield the probability distribution of the number of necessary ATCOs.
In this paper, we calculate a solution (the optimal number of ATCOs)
for each member of the ensemble, from which we derive probability
distributions of the number of necessary ATCOs . In particular, while
in Josefsson et al. (2020) we assumed that weather events are indepen-
dent, this is no longer a necessary assumption for our new approach,
which might give more realistic results. In addition, in this paper we
perform a sensitivity analysis on the strength of weather phenomena
that are considered impactful.

Roadmap. The rest of the paper is organized as follows. In Section 2,
we review the related work. In Section 3, we outline our procedure
for integrating weather impact in RTC staff scheduling and present
its details in Sections Section 4 (ATCO interviews and deduction of
taskload-driven impact factors), 5 (definition of numerical thresholds
for different impactful weather phenomena for obtaining weather data),
and 6 (integration of weather-related constraint into our previous
optimization model and resulting distribution of the necessary number
of ATCOs for RTC rostering). We present experimental results for five
Swedish airports in Section 7 and conclude in Section 8.

2. Related work

In this section, we review state of the art on staff planning at RTC
and the weather impact on air traffic services in general.

RTC staff scheduling. Van den Bergh et al. presented a literature review
of modern techniques for personnel scheduling problems (Van den
Bergh et al., 2013). They processed 291 articles from 2004 onwards
and classified the optimizations tasks and their solution methods from
different perspectives. The authors developed a number of recommen-
dations, some of which are used in our work, and other ones are left
for future research.

The RTC concept aims to provide air traffic service simultaneously
to multiple airports with ATCOs at a remote location (NORACON,
2013). A variety of aspects of this concept has been studied: Mohlen-
brink et al. (2010) and Papenfuss et al. (2010) considered usability
within the novel remote control environment. Wittbrodt et al. (2010)
emphasized the role of radio communication for RTCs. Meyer et al.
(2010) provided a safety assessment of the RTC concept, where they
suggest functional hazard analyses and pinpoint the issue of getting
reliable probability values for the models. Oehme and Schulz-Rueckert
(2010) suggested sensor-based solutions that alleviate the dependency
on visibility conditions and tower location. In addition, Friedrich et al.
(2017), Mohlenbrink et al. (2012), Mohlenbrink and Papenfuss (2011),
Manske and Schier (2015) and Papenfuss and Friedrich (2016) studied
work organization and human performance issues in the context of
remote towers. The authors proposed several methods to control two
airports from a single RTC and investigated how the monitoring per-
formance may influence the system design and behavioral strategies,
in particular, they presented results on the design of the novel RTC
workplaces.

Rostering of ATCOs naturally inherits some features from other
related staff scheduling problems, e.g., from nurse scheduling (Burke
et al., 2004), university course timetabling (Chiarandini et al., 2006),
or multi-skilled staff planning (Li and Womer, 2009). However, for
ATCO rostering schedule requirements are much stricter. Arnvig et al.
(2006) provide an overview on early results in shift scheduling in ATM
and detail European regulations and policies connected to ATCO work
organization.
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Various methods have been used for rostering ATCOs. In a sur-
vey, Conniss (2015) names, amongst others, Linear Programming,
Tabu Search, Simulated Annealing, Constraint Programming, and Case-
Based Reasoning. Stojadinovi¢ (2014) proposed to solve the ATC shift
scheduling by using various exact methods: CSP, SAT, Partial MaxSAT,
SMT, ILP and PB. The results indicate that SAT-related approaches
outperform other methods for the problem described. Conniss et al.
(2014) suggested an effective greedy heuristics to solve the problem.

The authors of all these studies aimed to provide rosters for ATCOs
in a conventional tower. In prior work, we have developed a framework
to compute rosters for ATCOs in an RTC (Andersson et al., June, 2016;
Josefsson et al., 2017,?; Dahlberg et al., 2017; Josefsson et al., 2019).

Weather in ATM. Quantification of the impact of different weather
phenomena on airport operation is reflected in many recent research
activities. Gultepe et al. (2019) described current knowledge available
for aviation operations related to meteorology and provided sugges-
tions for necessary improvements in the measurement and prediction
of weather-related parameters to serve safe aviation operations. The
authors claim that some weather-related events such as fog, precip-
itation, clear-air and in-cloud turbulence, wind shear, gust, or icing
may be related to changing climate conditions, and emphasize the
importance of considering aircraft flying conditions to improve future
aviation operations.

Taszarek et al. (2020) investigated spatial and temporal variability
of situations with limited visibility, thunderstorms, low-level wind
shear, and snowfall that cause disruptions in airline traffic and airport
operations. They used environmental parameters derived from the
ERAS5 database (European Centre for Medium-Range Weather Fore-
casts, 2021) and determined threshold values for meteorological met-
rics to distinguish between hazardous and non-hazardous situations,
some of which we use in this paper.

The problem of analyzing and quantifying the effects of meteorolog-
ical uncertainty in Trajectory-Based Operations was studied in Hernén-
dez et al. (2016) and Rivas et al. (2016). The authors considered two
types of meteorological uncertainty: wind uncertainty and convective
zones. New probabilistic radar-based nowcasting methods to support
ATM challenged by winter weather were proposed in Pulkkinen et al.
(2017) and Saltikoff et al. (2018). Impact of deep convection and thun-
derstorms is also subject of ongoing research, e.g., Steiner et al. (2010),
Steiner (2015) and Song et al. (2009) investigated their implication
both on en-route flow management and for terminal area applications.
Klein et al. (2009) used a high-level airport model to quantify the
impact of weather forecast uncertainty on delay costs. Recently, various
authors Reitmann et al. (2019), Steinheimer et al. (2019) and Lemetti
et al. (2020) confirmed the relevance and emphasized the importance
of studying the weather impact on airport operation.

To the best of our knowledge, there were no published attempts
to quantify the effect of different weather phenomena on controllers
taskload or workload.

3. Strategy outline for integrating weather impact in RTC staff
scheduling

To achieve our goal of integrating weather impact in RTC staff
scheduling, we implement the following steps:

(1) Identify impactful weather phenomena for each considered air-
port, see Section 4.

(2) Define threshold values for the impactful weather phenomena
from (1), see Section 5.2.

(3) Obtain weather data in form of EPS, see Section 5.1.

(4) Obtain flight movements for all considered airports.

(5) Calculate a distribution of the necessary number of ATCOs for
staffing based on the input from Steps (1) to (4), see Section 6.
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4. Weather impact on ATCO taskload

Our goal is to study the impact of weather on ATCOs and their
workload. However, no measures or classifications for this exist. Hence,
we performed structured interviews with three Swedish ATCOs working
at five Swedish airports, which are either already operated remotely or
considered for future remote operation. We present the airports and
ATCOs in Sections 4.1 and 4.2, respectively. In Section 4.3, we present
the interviews and, in Section 4.4, we present our results on the impact
of different weather phenomena at these five airports on ATCOs.

4.1. Airports

The five Swedish airports (APs) we consider can be characterized
by a couple of criteria:

+ AP1. Small AP with low traffic, few scheduled flights per hour. In-
land location north of the Arctic Circle and continental subarctic
climate (Koppen climate classification Dfc, see Britannica (2020)).

+ AP2. Small regional AP with regular scheduled flights (usually
open 24/7). Coastal location, Dfc, north of AP3-5.

+ AP3. Small regional AP with regular scheduled flights. Coastal
location, Dfc, north of AP5.

+ AP4. Small regional AP with regular scheduled flights. Coastal
location, Dfc, north of AP3 and AP5.

+ AP5. Low to medium-sized AP, multiple scheduled flights per
hour (usually open 24/7). Coastal location in the South of Swe-
den, Marine West Coast Climate.

4.2. ATCOs

We selected ATCOs with experience in working in a remote tower
and/or with significant operational experience (as not all five airports
are currently operated remotely); this way we ensured they are familiar
with all weather phenomena at the selected airports.

The main goal with the interviews was to obtain the additional tasks
appearing for different strengths of various weather phenomena. This
mainly depends on the airport’s specifics and its location and climate,
but not on the subjective work assessment of specific ATCOs—that is,
we target objective information. Hence, we did not aim to interview
several ATCOs per airport, but to interview at least one ATCO per
airport, who had long lasting experience there. One ATCO answered
the interview questions for AP1-AP3; one for AP3, AP4; and one for
APS.

The three interviewed ATCOs had an average and median experi-
ence as ATCO of 17.7 and 21 years, respectively; and an average and
median working time at the considered towers of 13 and 10 years,
respectively. Two of the ATCOs have worked remotely. Since our goal
is to map the additional weather-induced tasks at the five airports,
experience of working remotely is not important (as several of the
airports are only considered for future remote operation, but currently
not operated remotely).

4.3. Structured interviews

The structured interviews were performed based on a questionnaire
(see Schmidt and Polishchuk (2020)). Each ATCO was interviewed
separately via Zoom; each interview lasted 2-3 h (each ATCO was in-
terviewed on one airport, and we asked them to fill in the questionnaire
for other airports).

We first asked for general information on the ATCO and the ATCO
career. Then, we posed questions on the traffic density and its sea-
sonal variations at the airport: how many movements they usually
observe, how many Visual-Flight-Rules (VFR) and Instrumental-Flight-
Rules (IFR) movements are present on a normal day without impact by
weather phenomena, and during which seasons they observe highest
traffic.
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Table 1
Prose to numerical values.

Prose formulation Numerical value

no 0
rarely, not too much 0.25
sometimes, maybe, can happen, several times 0.5
often, increased, more likely, higher 0.75
yes 1
much more; yes, significantly 1.25

After this background information on ATCO and airport, we moved
to weather-related questions. This included questions relating to all
weather phenomena: sources for weather information, person in charge
for and frequency of weather updates, and influence of weather on
staffing decisions when operating the airport from a conventional
tower.

Thereafter, we treated different weather phenomena separately:
snow, low visibility, precipitation (excluding snow), wind (strong low-
level and surface winds), and convective weather. For each weather
phenomenon we asked about its metric and usual values of this met-
ric, and which additional ATCO or manager tasks appear in case of
occurrence of that weather phenomenon. Additionally, we asked how
the number of VFR and IFR movements changes for light, moderate
and severe occurrence of the weather phenomenon. Finally, we queried
the occurrence of additional ATCO tasks in case of a light, moderate
or severe occurrence of the weather phenomenon (we derived the list
of possible additional tasks associated with different weather phenom-
ena from the hazard assessment cards suggested by EUROCONTROL
(2013)). Examples for the additional tasks are:

+ Anticipation and condition detection

» Visual observation

» Runway closing for inspection and re-opening

+ Change of departure/arrival runway

* Clearing arrivals to holding areas

+ Increased coordination with the ground traffic

« Provision of information on alternate aerodromes’ conditions and
availability

We completed the weather-phenomenon-specific questions for each
weather phenomenon with an open question on potential additional
ATCO tasks the ATCO would want to add to our list.

4.4. Interview results on weather impact

The ATCOs answered, in prose, our queries (presented in the tables
in Sections 4-8 of Schmidt and Polishchuk (2020)) on the occurrence
of additional ATCO tasks in case of a light, moderate or severe strength
of the weather phenomena. We transfer these answers to numerical
values according to Table 1. Taking the average of these values for
all additional ATCO tasks associated with a weather phenomenon
(and for AP3 over two ATCOs’ answers), we obtain average taskload-
driven impact factors of light, moderate and severe occurrences of the
weather phenomena. For easy visual differentiation of the airports,
we transfer the numerical average taskload-driven impact factors to a
heat value, and present the resulting impact-heat tables for snow, low
visibility, precipitation and strong winds in Fig. 1(a), (b), (c), and (d),
respectively.

Regarding convective activity, we could not find a strong definition
from the interviewed ATCOs about the difference in tasks for different
intensities of convective activity (only the ATCO interviewed on AP5
was at all able to identify a difference between light, moderate, and
severe thunderstorm occurrence). As a consequence, we treat thun-
derstorms as a binary variable, i.e, we differentiate between only two
states: no convective activity and convective activity.

EURO Journal on Transportation and Logistics 11 (2022) 100076

From the impact-heat tables, we can clearly see that the ubiquitous
weather phenomenon snow has highest impact on the northern airports
AP1 and AP2, and has hardly any influence on AP5, located in the
South, where it occurs rarely. Remember that we consider taskload (not
workload). Hence, even though the ATCOs working at AP1 and AP2 are
used to snow, its occurrence still yields additional tasks and, thus, an
increased taskload. A particularly high impact of severe low visibility
can be observed at AP2: a coastal airport in the North of Sweden.

These average taskload-driven impact factors allow us to differenti-
ate the impact that different intensities of the weather phenomena have
on the five airports. However, as a next step, we aim to integrate the
varying impact into the staff scheduling for an RTC with AP1-AP5 in
remote control. Hence, we need to decide what constitutes a threshold
over which a weather phenomenon influences ATCO’s work at an
airport significantly. In our prior work Josefsson et al. (2020), taking
Table 1 into account, we used a value of 0.5 as a cutoff for the taskload-
driven impact factor (with the rationale being that an impact that
happens at least sometimes is strong enough to necessitate integration
in planning). In this paper, apart from introducing a new method for the
integration of weather uncertainty, we perform a sensitivity analysis
on this cutoff value: we use cutoff values of 0.2, 0.3, 0.4, 0.5, 0.6, and
0.7 and study the effect on staff scheduling for the RTC—namely, on
the number of ATCOs needed to remotely control the five considered
airports.

In operational staff scheduling, the cutoff value may be changed
depending on the operator’s estimate of what constitutes a strong
enough impact to be accounted for. In Table 2, we summarize the
strength of a weather phenomenon at each airport that has an average
taskload-driven impact factor of at least 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2,
respectively, and which, hence, is considered strong enough that it must
be accounted for in staff planning.

5. Weather input

In this section, we describe Steps (2) and (3) from Section 3, related
to the definition of numerical thresholds for different impactful weather
phenomena and to the retrieval of probabilistic weather information
from EPS.

5.1. EPS

Weather forecasts inevitably involve some level of uncertainty,
which is a consequence of the chaotic nature of the atmosphere and
the limited capacity to measure and model meteorological conditions.
Probabilistic weather forecasts include quantitative information about
this uncertainty intrinsic to meteorological predictions. One popular
probabilistic weather forecasting technique is ensemble weather fore-
casting (EWF), which consist of generating a range of future weather
possibilities. Today’s trend is to use EPS, which is based on running
a deterministic Numerical Weather Prediction (NWP) model multiple
times from slightly different initial conditions and with slightly per-
turbed weather models (World Meteorological Organization, 2012).
Typically, an EPS is a collection of 10 to 50 forecasts, referred to as
members; the uncertainty information is on the spread of the members.

Probabilistic weather information obtained from EPS can be in-
tegrated into aviation problems using two different approaches. In
the first one, probability distributions of meteorological parameters of
interest are obtained from the ensemble forecast, and these distribu-
tions are used later to obtain the probability distribution of the sought
solution using a probabilistic methodology (transformation approach).
In the second approach, a deterministic methodology is used for each
member of the ensemble, leading to an ensemble of solutions from
which probability distributions can be derived (ensemble approach). In
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0
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Precipitation Strong Winds
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Fig. 1. Impact-heat tables for (a) snow, (b) low visibility, (c) precipitation, and (d) strong winds.
Table 2
Weather Intensity for different Average Taskload-Driven Impact Factors.
Cutoff value for average taskload-driven impact factor
Airport Intensity >0.7 >0.6 >0.5 >0.4 >0.3 >0.2
AP1 Snow severe severe moderate moderate moderate moderate
Low visibility - severe severe moderate moderate moderate
Precipitation severe severe severe severe severe severe
Strong winds - severe moderate moderate moderate moderate
AP2 Snow severe severe moderate moderate moderate moderate
Low visibility severe severe severe moderate moderate moderate
Precipitation severe severe severe severe severe severe
Strong winds - - severe moderate moderate moderate
AP3 Snow - severe severe severe severe moderate
Low visibility - severe severe severe severe moderate
Precipitation - - - severe severe severe
Strong winds - - - moderate moderate moderate
AP4 Snow - - - severe severe severe
Low visibility - - severe severe severe severe
Precipitation - - - - - severe
Strong winds - - - - moderate light
APS Snow - - - - - moderate
Low visibility severe severe moderate moderate moderate moderate
Precipitation - - - - - -
Strong winds - - severe moderate light light

our prior work Josefsson et al. (2020), we followed the first approach.
In this paper, the second approach is employed.

For the sake of illustration, the probabilistic weather information
in this paper is obtained from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERAS reanalysis dataset. The ERAS
database contains estimates of a large number of weather variables
from year 1979 onwards. It covers the whole surface of the Earth,
with a spacial granularity of 30 km and 137 vertical levels from the
surface up to a height of 80 km. The dataset includes an uncertainty
estimation for ERAS in the form of a 10-member ensemble (European
Centre for Medium-Range Weather Forecasts, 2021), which has a
temporal granularity of three hours. We use this last ensemble product
to illustrate the capabilities of our methodology in this paper.

5.2. Numerical weather thresholds

Next, we define the parameters quantifying the weather phenomena
and identify the thresholds corresponding to different intensities of the
weather phenomena.

The selection of weather parameters and numerical weather thresh-
olds in this paper is inspired by the work of Taszarek et al. (2020),
where the authors use ERAS reanalysis data to define proxies associated
with hazardous weather conditions causing disruptions in European
air traffic. Notice that, as mentioned in Taszarek et al. (2020), the
defined thresholds are only proxies of a potential impactful weather
occurrence, and they cannot be considered discriminators that will
perfectly distinguish between particular hazardous and non-hazardous
weather events.
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Table 3
ERAS5 parameters for impactful weather phenomena.

EURO Journal on Transportation and Logistics 11 (2022) 100076

Table 4
Airport-dependent numerical thresholds for impactful weather phenomena.

Weather phenomenon ERAS parameter Variable Airport  Intensity Strong winds Low visibility
Strong winds Instantaneous 10 meter wind gust il0fg Light - -
Cloud base height cbh AP1 Moderate 15 knots<il0fg<25 knots 200 ft<ecbh<301 ft, Icc>0.625
Low visibility Low cloud cover lee Severe i10fg>25 knots cbh<200 ft, lcc20.625
Snow Snowfall sf Light - -

— — AP2 Moderate 15 knots<il0fg<25 knots 200 ft<cbh<301 ft, /cc>0.625
Precipitation Total precipitation p Severe i10£g>25 knots ¢bh<200 ft, lcc20.625
Convective activity Convect¥ve avall.al.nle .potentlal energy CAPE Light _ _

Convective precipitation cp AP3 Moderate 15 knots<il0fg<25 knots 200 ft<cbhh<301 ft, lcc>0.625
Severe i10fg>25 knots ¢bh<200 ft, Icc>0.625
Light 15 knots<il0fg<25 knots -
. AP4 Moderate 25 knots<il0fg<35 knots 200 ft<cbh<301 ft, lcc>0.625
The weather parameters and some of the thresholds herein de- Severe 110235 knots bh<200 ft, lcc>0.625
scribed are tailored to the ECMWF ERAS reanalysis ensemble product. Tight 15 knots</10,/g<25 knots 200 ft<cbh<301 ft, [cc>0.625
Should any other ensemble weather product be used as a source for AP5 Moderate 25 knots<il0£g<35 knots 100 ft<cbh<200 ft, lcc>0.625
weather data, it may be necessary to revisit and adapt these parameters. Severe i10fg>35 knots ¢bh<100 ft, lcc>0.625
The chosen numerical values for the different impactful weather
events of light, moderate and severe intensity for the different airports Table 5
can be classified into two types: airport-specific threshold values ob- General numerical thresholds for impactful weather phenomena.
tained from the ATCO interviews, and general threshold values derived Intensity Snow Precipitation
from literature. A summary of the used ERA5 weather parameters and Light 0< sf<1 mmh™! 0< tp<2.5 mmh~!
. . Moderate 1 mmh~! <sf<2.5 mmh~! 2.5 mmh~! <¢p<10 mmh~!
the correspondent variables can be found in Table 3. = o
Severe sf>2.5 mmh tp>10 mmh

Airport-specific thresholds. We have identified two weather phenomena
whose threshold values were described by ATCOs in the conducted
interviews, and that vary from airport to airport: strong winds and low
visibility.

The weather parameter of the ERA5 reanalysis ensemble product
used to identify strong winds is the instantaneous maximum wind
gust at a height of ten meters above the surface of the Earth (i10fg).
The ATCO working at airports AP1, AP2, and AP3 defined moderate
wind with values between 15 knots and 25 knots for all the three
airports; with this information, moderate winds in these airports are
identified in the range 15 knots<i10fg<25 knots, and severe winds for
i10fg>25 knots. The ATCO working at AP5 defined light wind to be
more than 15 knots, moderate wind to be between 25 and 35 knots,
and severe wind to be above 35 knots; the thresholds for strong winds
in airports AP4 and AP5 are based on this description.

Following the work of Taszarek et al. (2020), low visibility thresh-
olds are based on the decision height defined by the Instrument Landing
System (ILS). Two weather parameters in the ERA5 reanalysis data,
cloud base height (cbh) and low cloud cover (/cc), are used to identify
this decision height. We have approximated the decision height as the
cbh, with the condition that the values of Icc describe a broken (BKN)
sky (over five oktas, or, equivalently, /cc>0.625) (US Department of
Transportation. Federal Aviation Administration, 2016). In the inter-
views, ATCOs at airports AP1, AP2, AP3, and AP4 identified severe
low visibility at 550 m Runway Visual Range (RVR); which is the
equivalent to ILS CAT I, with a decision height of 200 ft. They also
described moderate low visibility as RVR values around 800 m. Taking
this into account and using the decision height values for different
RVRs described in European Commission (2007), the cbh threshold
used as a proxy for severe low visibility in airports AP1 to AP4 is
c¢bh<200 ft (RVR<550 m), while moderate low visibility sits in the
range 200 ft<cbh<301 ft (550 m<RVR<800 m). On the other hand,
the ATCO in airport AP5 identified severe low visibility at 300 m
(equivalent to ILS CAT II, with a decision height of 100 ft). For this
last airport, we considered the described thresholds for ILS CAT I as
the thresholds for light and moderate low visibility, and define a new
value for severe low visibility as ¢bh<100 ft (RVR<300 m).

The values of the numerical thresholds at each airport for wind and
low visibility are collected in Table 4.

General thresholds. General thresholds are defined for snow, precipita-
tion and convective activity events. The chosen parameter of the ERA5
ensemble product used to measure snow is the accumulated snowfall
over the time interval of three hours, measured in meters of water
equivalent; the snowfall rate (sf), measured in millimeters per hour,
is obtained by evenly dividing the accumulated snowfall over these
three hours. The thresholds for light, moderate and severe snowfall are
obtained from the guidelines of the Society of Automotive Engineers’
(SAE) Ground Deicing group, also accepted by the International Civil
Aviation Organization (ICAO) (International Civil Aviation Organiza-
tion, 2008): light snowfall falls in the range 0 to 1 mm per hour,
moderate snowfall is considered to fall between 1 mm and 2.5 mm per
hour, and severe snowfall is registered for values over 2.5 mm per hour.

To measure precipitation, we used the total precipitation accumu-
lated over three hours. Similar to the case of snowfall, we divide the
accumulated precipitation by the three-hour time interval to obtain the
total precipitation rate (¢p). The thresholds for light, moderate, and se-
vere precipitation are based on the World Meteorological Organization
guidelines, described by ICAO in Doc 9837 (International Civil Aviation
Organization, 2011): light precipitation comprises values between 0
and 2.5 mm per hour, moderate precipitation falls between 2.5 mm and
10 mm per hour, and severe precipitation exceeds 10 mm per hour.

The numerical thresholds for snowfall and precipitation are sum-
marized in Table 5. As previously mentioned in Section 4.4, we treat
convective activity as a binary variable. Following the work of Taszarek
et al. in (2020) and (2019), thresholds for two parameters in the
ERAS reanalysis model are used as a proxy for convective initiation:
convective available potential energy (CAPE) and convective precip-
itation (cp). CAPE is a measurement of the potential outbreak of a
thunderstorm; in particular, it is a vertical integral of the thermal
buoyancy of a hypothetical air parcel that is lifted from its original
vertical position (Groenemeijer et al., 2019). For the ascending parcel
considered for the calculation of CAPE in the ECMWEF Integrated Fore-
casting System (IFS), 1000 Jkg~! can be considered a threshold for the
potential outbreak of convective activity (European Centre for Medium-
Range Weather Forecasts, 2021). An additional proxy for convective
activity is the occurrence of convective precipitation. Following the
definition of a thunderstorm day in Taszarek et al. (2019), we define a
value of ¢p>0.075 mmh~!. In summary, convective activity is identified
when both conditions CAPE>1000 Jkg~! and cp>0.075 mmh~1 are
met.
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Table 6
Notation: Parameters.
Parameter Definition
A Set of airports
At Set of airports for breaks
C Set of controllers
P Set of time periods
P Number of time periods
z Max number of consecutive periods controller is in position
Mov,,, Max number of movs per controller per period
Apax Max number of airports per controller per period
Crnax Max number of controllers per airport per period
Amov, Number of movs at airport a during period A
0Pyn =1 if airport a is open during period h, = 0 otherwise
Cia =1 if controller i holds endorsement to control airport a
r Set of airports which have conflicts in schedules
I, Set of periods when airport a has conflicts with airport o’
Tax Upper bound on the length of controller shift
Thin Lower bound on the length of controller shift
B Minimum number of break periods per controller
B« Maximum number of break periods per controller
Rin Minimum rest periods between the shifts
R Maximum rest periods between the shifts
Table 7
Notation: Variables.
Variable Definition
q; binary, = 1 if controller i is used during some period
Yin binary, = 1 if controller i is at work during period A
Uiy binary, = 1 if controller i starts his shift at period A
period, , binary, = 1 if controller i is assigned to airport a during period A
mov, , number of movs handled by controller i at airport a during period i
w;, number of consecutive periods including 4 controller i is at work

6. Optimal RTC staff scheduling

Our MIP for RTC staff scheduling is based on our prior work (Josef-
sson et al., 2017). Hence, we start with recapitulating that MIP and
present some changes to it, which refer solely to shift properties. Then,
we introduce constraints to take care of periods during which impactful
weather appears at an airport. Finally, we describe the computation of
the probability distribution of the necessary number of ATCOs using
EPS.

6.1. MIP for RTC staff scheduling

Tables 6 and 7 summarize the notation used in this section. Con-
straints of our original MIP are given in Egs. (1)-(17) (we create a cyclic
schedule, hence, we consider the periods, 4, modulo the total number
of periods,mod p), whenever we do not consider a single period only).

Z mov; , p, < Mov,,,, Vie C,Yh e P
ac€A

@

Y period,,, < Vin A Vie C,Yhe P

acAuA*

@
mov; , p < period; ., - Mov,, Vi€ C,Va€ A,VhE€ P

3
2 mov; , = Amouv, , Va € A,Yh e P
ieC

4
Zperiodm'h > 0Pyn Va€ A,Yhe P
ieC

)
Y period, ,, < Com Va€ AYhe P
ieC

(6)
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period, , , + period; 4 < 1 VieC,Va,d €T,
Vhel,, ia#d
(7)
Zperiadi.a,h = 0 VieC,VYa€ AUA* 1 £,,=0
heP
®
Uin > Yin — Yi(h—1mod p) VieC,VYhe P
€©)
Uih < Yin Vie C,Yhe P
(10)
h
Z Uj gmod p) < Yin VieC,Yhe P
n=h+1-Tyin
an
h
2 Ui gmod p) > Vi Vie C,Yhe P
N=ht 1 =Ty
(12)
Ui < 1 vieC
heP
(13)
period, , , + period; , < 1 VieCVae€ AVd e A*YheP ¢, ,=(,=1
14
Yin < Z period; , , + 2 period; 4,  Vie C,VYhe P (15)
agA: deat:
ia=1 €=l
htz-1
Wip = Z (yi,trmod » _Periad,-'a{,mod p)) VieC,Vae A" : f:.u =1,YVhe P
n=h

(16

VieC\NVae A* 1 ¢,,=1,Yhe P
a7

period; 4 i zqmod py = (1/2) - w; ), = (z=1)/z

We introduce some changes to the MIP from (Josefsson et al., 2017):

h+Rpyin

Vj gmod p) < 4i = Vikmod p) Vie C,Yhe P (18)
n=h+1
h+Rmax

Vimodp) 2 i~ Vikmodp ~ Vi€C.VAE (I..p= Ruy) 19
n=h+1
Z period; 4 < Brax Vie C,Vae At : Cig=1 (20)
heP
Z period; 4 > Buin * 4 VieCVae At 1 ¢, =1 21
heP

Eq. (1) enforces a maximum number of movements that any ATCO
handles during any period; Eq. (2) enforces a maximum number of
airports that any ATCO handles during any period. With Eq. (3), we
ensure that an ATCO handles (at most Mov,,,) movements at an
airport only if the ATCO is assigned to that airport during the same
period. Eq. (4) guarantees that all movements (at all airports and during
all periods) are assigned to some ATCO. Eq. (5) guarantees that all
opening hours of all airports are covered. Eq. (6) yields a maximum
number of ATCOs assigned to the same airport during any period.
Eq. (7) makes sure that potential conflicts in airport schedules are
avoided (that is, two airports with simultaneous movements during a
5-min interval are never assigned to the same ATCO during the period
in which this interval falls). Eq. (8) enforces that no ATCO is assigned
to an airport for which the ATCO does not hold an endorsement, that
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is, that ATCOs are assigned only to those airports, for which they hold
endorsements.

The remaining constraints implement the operational controller
shift requirements. Our formulation of ATCO shifts is based on the
on/off sequences presented by Pochet and Wolsey (Pochet and Wolsey,
2006). We use auxiliary, artificial “break” airports: the set A*. Each
ATCO holds an endorsement for A, individual such break airports
(i.e., exactly one controller holds an endorsement for each of the
airports in A*). We consider the breaks as part of the working day,
and controllers are assigned to airports in A* during their breaks. No
opening hours at these airports need to be covered. After z continuous
hours of work at “real” airports, the ATCO must be assigned to an
airport in A*.

Egs. (9) and (10) ensure that an ATCO can start a shift during
period A only if they do not work during period 4 — 1 and do work
at all during A. Eqgs. (11) and (12) yield the lower and upper bound on
the shift length (i.e., a minimum and a maximum ATCO shift length):
when working during period 4 the ATCO cannot have started their shift
during the last T,,;, — 1 periods, but must have started their shift during
the last T, — 1 periods. With Eq. (13), we yield that an ATCO only
works at all, if the ATCO starts a shift at some point. Eq. (14) lets
ATCOs work only at a real airport or on a “break” airport, but not on
one of each simultaneously; Eq. (15) ensures that an ATCO is at work
during period h only if the ATCO is assigned to work at some real or
break airport during that period. Finally, we aim to enforce a maximum
and a minimum number of consecutive periods during which an ATCO
may work “in position” (a maximum and minimum continuous time
“in position”). With Eq. (16), we look z periods ahead (including the
currently considered period ) and count the number of periods among
these z periods during which an ATCO worked in position (that is,
was assigned to at least one airport from A). Eq. (17) then enforces
an assignment to a break airport in period 4 + z, if the ATCO worked
all z periods (period 4 until period A + z — 1): if w; , = z (i.e., if ATCO
i worked all z periods from period 4 until 2 + z — 1), the right-hand
side of Eq. (17) equals %, which enforces the left-hand binary to be 1;
if w; , < z, the right-hand side of Eq. (17) is less or equal to zero, and,
hence, the left-hand side is not forced to a specific value.

Egs. (18) and (19) enforce a minimum and maximum rest period
(time off work) between two consecutive shifts for an ATCO. Egs. (20)
and (21) enforce that each controller takes at most B and at least
B, breaks.

As objective function we choose the minimization of the number of
ATCOs (in addition, when we want to improve the resulting schedules,
we can minimize airport-assignment switches or the average number of
ATCOs per airport, as in Josefsson et al. (2017)):

min Z q; (22)

ieC

max

6.2. Integrating impactful weather periods into the MIP

We introduce a final constraint that enforces an airport with im-
pactful weather during an hour % to be handled in single mode during
that time. We introduce a new binary parameter s, ,, which is 1 if
airport a must be operated in single mode in period 4, and a new
Constraint (23): If an airport a must be operated in single mode in
period h (because of impactful weather at a« during A, that is, if in
the ensemble member we have a weather-phenomenon intensity at a
during A for which the taskload-driven impact factor exceeds the cutoff
value), an ATCO assigned to a in A may not be assigned to any other
airport in A. This substitutes the old Constraint (2).

Z period; 4t pmod py < Vikmod p) * Amax — (Amax = DSan - period; 4 mod p)
de
Auat

VieC,Yhe P, Yac A (23)
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We give an example for setting the parameter s,,: Assume that
in the considered ensemble member, we have severe low visibility at
AP1 during hour 5 (i.e., cbh < 200ft,lcc > 0.625). The taskload-driven
impact factor of severe low visibility at AP1 is 0.66 (Fig. 1b). If we use
a cutoff value of 0.6 this yields that AP1 should be operated in single
mode during hour 5, that is, s AP1s =1l

6.3. Distribution of necessary number of ATCOs

The probability distribution of the necessary number of ATCOs (Q)
is obtained using the described MIP and EPSs as follows. For each of the
M EPS ensemble members, we solve the MIP and obtain the number
Q,.»m =1... M of ATCOs needed. Then the probability that at most k
ATCOs are needed is:

M
PO <K = D X, (0, @24)
m=1
where
1 if 0, <k,
Xn(k) = { 0 otherwise. (25)

7. Experimental study: Sweden

To illustrate how the described strategy for integrating weather
impact into ATCO staff scheduling can be used in practice we perform
an experimental study on the example of two days of the year 2020 for
AP1-AP5 in remote control. We follow Steps (1)-(5) from Section 3.

(1) Identify impactful weather phenomena for each considered
airport: We considered AP1-5, and the impactful weather phenomena
were identified as described in Section 4.4, Table 2.

(2) Define threshold values for the impactful weather phenom-
ena: We deduced threshold values for the impactful weather phenom-
ena from Table 2 in Section 4.4, and the chosen values are listed in
Section 5.2.

(3) Obtain weather data in form of EPS. We downloaded weather
data from the ERAS5 reanalysis database for February 2020 and July
2020 and chose two exemplary dates:

+ February 16, 2020: A winter day during which four out of the five
considered weather phenomena occurred: snow, low visibility,
strong wind and precipitation.

+ July 29, 2020: A summer day during which three out of the five
considered weather phenomena occurred: low visibility, wind and
precipitation.

As previously mentioned in Section 5.1, the ERAS reanalysis ensemble
presents weather data every three hours. The hourly weather variables
used in this work are obtained as follows: for cumulative weather
parameters (snowfall and precipitation), the accumulated quantity is
divided by the length of the time interval (three hours); for instanta-
neous weather parameters, a linear interpolation is used to obtain the
intermediate hourly values.

(4) Obtain flight movement data for all airports. We obtained
the number of movements per hour at each airport using FlightRadar24
historical flight data. The movement data for February 16, 2020, and
July 29, 2020, is shown in Fig. 2(a) and (b), respectively. We use only
hours 6-14 for February 16, 2020, and 14-22 for July 29, 2020, that
is, we provide rosters for nine hours of operation for each of the days.

(5) Calculate a distribution of the necessary number of ATCOs
for RTC staffing.

The following parameters are set for the experiments to reflect the
safety and efficiency requirements for RTC personnel operation typical
for controller shifts (Josefsson et al., 2017):
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Feb16| 6 | 7 | 8 | 9 [10 | 11 | 12 | 13 | 14 |[Jm29] 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22
AP1I| O 0 1 0 1 0 1 2 1 AP1| 1 1 0 1 1 0 0 0 o0
AP2| 1 1 17 1 1 2 2 2 2 AP2| 1 0 3 0 2 3 2 1 2
AP3/ 0 0 0 O o0 O 0 3 0 AP3| 0 1 1 0 0 0 0 0 o0
AP4Al O 0 0 O O0 O 1 1 1 AP4| 0 0 0 0 0 0 0o 0 o
AP5/ 1 4 0 3 3 4 2 6 4 AP5( 3 4 0 0 1 4 0o 0 2

(a)

Fig. 2. The number of flight movements for the five Swedish airports during nine hours of operation on (a) February 16, 2020, and (b) July 29, 2020.

(a) Maximum number of airports assigned to one controller (A,,,):
The default value of the maximum number of airports assigned
to a controller is set to 2. From the experts we learned that there
may be problems with visual representation, communication, and
switching between the views when more than two airports are
controlled by the same person within one remote tower module.
But theoretically it is possible to control even more airports
from one controller working position, e.g., three airports are
considered in simulation studies by DLR (Friedrich et al., 2020).

(b) Maximum number of movements per controller per period (Mov,,,,):
The maximum number of movements one controller handles at
the remote tower during one hour is set to 10. This conservative
assumption represents a manageable workload for the ATCO.

(¢) Maximum number of controllers per airport (C,,,):

In this work we assume each airport is handled by one ATCO
during each period of time. But in principle, for safety reasons
it may be needed to assign two controllers to control one airport.
Our model provides such a possibility.

(e) Length of controller shift (T, and T,,,,): The total time a controller
spends at work should be between 3 and 9 h.

(g) Maximum continuous time without break (z): Controllers should not
work “in position” for longer than 4 h without break.

(i) Length of controller breaks (B, and B, ): The controller is re-
stricted to have at least 1 but no more than 4 h for the breaks,
which matches requirements for the lengths of controller shift and
total hours “in position”.

(j) Time between the shifts (R,,;, and R,,,,): In between two shifts an
ATCO must rest for at least 2 but at most 10 h. These parameters
are based on the considered time interval of 9 h: as we create a
cyclic schedule, parameter values used for actual 24/7 operation
would not create realistic solutions here. For daily or weekly
schedules larger values should be used.

(k) Period: The length of the time period is one hour.

As described in Section 4.4, we use six different cutoff values
(0.2,0.3,0.4, 0.5, 0.6, and 0.7) to perform a sensitivity analysis and
study the impact on the number of ATCOs needed. We solve our MIP
from Section 6 for each of six cutoff values for each of ten EPS members
getting as a result 60 scenarios for each day. Additionally, we—using
our MIP without Constraint (23)—compute the minimum number of
ATCOs necessary when no weather influence is taken into account. We
use Gurobi optimization software installed on a very powerful Tetralith
server (Anon, 2020), utilizing the Intel HNS2600BPB computer nodes
with 32 CPU cores, 384 GiB, provided by the Swedish National Infras-
tructure for Computing (SNIC). The computational time of each run
of our optimization program on this powerful machine varied between
0.08 and 3.03 s with an average value of 0.38 s.

When we optimize the number of ATCOs for the 9-hour intervals on
both considered dates without taking weather into account, we obtain
staff schedules with 5 ATCOs. Taking weather into account, we obtain
different distributions of the number of necessary ATCOs dependent on
the cutoff value (see also Fig. 3 for bar diagrams):

+ February 16, 2020

Cutoff 0.2: 8 ATCOs necessary with a probability of 100%
Cutoff 0.3: 8 ATCOs necessary with a probability of 100%
Cutoff 0.4: 8 ATCOs necessary with a probability of 100%
Cutoff 0.5: 7 and 8 ATCOs necessary with a probability of
30% and 70%, respectively

Cutoff 0.6: 6 ATCOs necessary with a probability of 100%
Cutoff 0.7: 5 ATCOs necessary with a probability of 100%

+ July 29, 2020

— Cutoff 0.2: 5 and 6 ATCOs necessary with a probability of
30% and 70%, respectively

Cutoff 0.3: 5 and 6 ATCOs necessary with a probability of
30% and 70%, respectively

Cutoff 0.4: 5 and 6 ATCOs necessary with a probability of
30% and 70%, respectively

Cutoff 0.5: 5 and 6 ATCOs necessary with a probability of
90% and 10%, respectively

Cutoff 0.6: 5 and 6 ATCOs necessary with a probability of
90% and 10%, respectively

Cutoff 0.7: 5 ATCOs necessary with a probability of 100%

The following additional metrics are summarized in Tables 8 and 9:

Average number of ATCOs per airport: we count the number of
controllers assigned to each particular airport during the day and
calculate the average over the given number of airports.
Average number of endorsements per ATCO: for each controller
we count the number of airports he/she is assigned to during the
day and calculate the average over the number of controllers.
Average time at work: we count the total number of hours con-
trollers spend at work (including breaks) and take the average
over the number of controllers.

Average time ”in position”: for each controller we count the
number of hours each controller works ”in position” and calculate
the average over the number of controllers.

Coefficient of performance (COP): for each controller we calculate
the ratio of the time ”in position” over the total time at work, and
take the average over the number of controllers. This metric may
be interpreted as an indicator of the controller’s work intensity,
and at the same time represents the quality of the resulting
controller shift, as it shows the percentage of the time a controller
is actually ”in position” during his/her shift.

To calculate these metrics we fixed the number of controllers (to the
minimum number we obtained) and ran the experiments with another
objective, minimizing the number of active controllers per airport,
using the approach developed in Josefsson et al. (2017). Additionally,
we took an average over ensemble members statistics.

Discussion. We can clearly observe the impact of weather and the
cutoff value on the resulting distribution of the number of necessary
ATCOs. If we optimize the number of ATCOs without taking weather
into account, we would plan to schedule 5 ATCOs for both days. For
February 16, 2020, 8 ATCOs need to be scheduled when a low taskload-
driven impact factor (with cutoff value 0.2) is taken into account, while
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Fig. 3. Distribution of the necessary number of ATCOs with different cutoff values for (a) February 16, 2020, and (b) July 29, 2020. Red dots indicate the expected value for the

necessary number of ATCOs (the red line indicates the trend of this expected value).

Table 8
Statistics for the roster for February 16, 2020.
Cutoff Av. # of Av. # of Av. time Av. time CoP
ATCOs per airports per in position, at work,
airport ATCO hours hours
0.2 2 1.25 5.63 6.75 0.83
0.3 2 1.25 5.63 6.75 0.83
0.4 2 1.25 5.63 6.75 0.83
0.5 2.04 1.33 5.73 6.85 0.84
0.6 2 1.67 6 7 0.86
0.7 2 2 5.68 6.98 0.81
No weather 2 2 5.8 7 0.83
Table 9
Statistics for the roster for July 29, 2020.
Cutoff Av. # of Av. # of Av. time Av. time COP
ATCOs per airports per in position, at work,
airport ATCO hours hours
0.2 2 1.77 5.89 6.98 0.84
0.3 2 1.77 5.89 6.98 0.84
0.4 2 1.77 5.89 6.98 0.84
0.5 2 1.97 5.78 6.94 0.83
0.6 2 1.97 5.76 6.92 0.83
0.7 2 2 5.82 7 0.83
No weather 2 2 5.8 7 0.83

only 5 are needed for a cutoff value of 0.7. For July 29, 2020, 5 ATCOs
will be sufficient only with 30% probability if we choose a low cutoff
for the impact factor (0.2), but with 100% probability in case of a cutoff
value of 0.7.

The choice of an appropriate cutoff value depends on the prefer-
ences of the operational manager: With a lower cutoff value a higher
safety level can be achieved, as a larger set of potentially critical
situations is avoided, however, this comes at the cost of using more
staff members. That is, we see a clear trade-off between safety level (re-
flected in the chosen cutoff level) and staffing need, with the resulting
higher HR cost.

From the roster statistics, we observe that the cutoff value does have
hardly any impact on the average number of ATCOs that are assigned
to work with an airport during the 9-h time intervals. However, with
increasing cutoff value, the average number of served airports per
ATCO increases—with a higher cutoff value airports are operated in
single mode less frequently, thus, ATCOs are more often working in
multiple position and, hence, need to be trained for more airports.

We used a weather product with ten ensemble members. Conse-
quently, our probabilities come in a step size of 10%. Thus, the lowest
non-zero probability for a number of necessary ATCOs is 10%, which—
depending on the desire to include even less likely scenarios—might be
a reasonable value to take into account. With weather products with

10

more ensemble members, finer granularity in the resulting distribution
can be achieved. Operations might then opt to ignore a probability of,
e.g., 2% (possible with at least 50 ensemble members).

The probabilistic weather information used for this paper stems
from the ERAS5 data set, which was used to illustrate the capabilities
of our staffing model. This is not a weather forecast, hence, the distri-
bution of weather features less variability than a probabilistic forecast
would. Consequently, while in our experiments several cutoff values
led to a number of necessary ATCOs with 100% probability, this is less
likely in the actual application scenario for forecasting in which we
will have probabilistic weather information that will most likely present
higher variability.

Finally, while we do consider taskload-driven impact factors and
while the taskload does not vary between different ATCOs, the work-
load, that is, the subjective stress experienced during the same tasks can
vary depending on, e.g., ATCO experience, ATCO age, etc. This could
be taken into account when determining the appropriate cutoff value.

Practical application. Current ATCO working regulations do not even
take seasonal variations into account. This often yields overstaffing dur-
ing low-traffic months and staff shortages during high-traffic months.
Thus, a good estimate of the necessary number of ATCOs results in a
higher safety level. The implementation of such a schedule, which may
have significant variations in the number of ATCOs from day to day,
can be challenging. However, we see clear benefits of being prepared
instead of facing possible staff shortages on the day of operation.
Moreover, the training unit could complement the new schedules by
planning training events during days with fewer scheduled ATCOs:
the ATCOs working not in position can be trained to sustain their
competence, which contributes also to a higher overall safety level.

8. Conclusion

We proposed a method to account for weather impact on ATCO
work in RTC staff scheduling. We highlighted that no measures or
classifications for weather impact exist, and used structured interviews
with experienced ATCOs to deduce taskload-driven impact factors for
five weather phenomena at five Swedish airports. We identified dif-
ferent sources for numerical thresholds for these impactful weather
phenomena and used probabilistic weather products to obtain an en-
semble of staffing solutions, from which we then derived probability
distributions of the number of necessary ATCOs. To compute the en-
semble of staffing solutions, we applied our prior MIP for RTC staff
scheduling extended by a constraint requiring an airport with impactful
weather occurrence to be operated in single mode. We presented a
detailed sensitivity analysis on the cutoff value for the taskload-driven
impact factor and could clearly highlight a trade-off between safety
level and staffing need.
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Our experiments for five Swedish airports and days with three to
four weather phenomena occurring clearly show the possible impact of
weather: the five ATCOs that would be scheduled taking all legal and
shift-related constraints into account on both days are not always suf-
ficient for the RTC without possibly yielding situations compromising
safety due to weather. Only for a cutoff value of 0.7, the scheduling
of five ATCOs will avoid what is considered as a critical situation with
that value.

We highlighted the importance of developing meteorological prod-
ucts with longer look-ahead horizon, tailored to the needs of airports
staff planning. This is particularly important for remote towers.

One direction for future work is the practical validation of our
work. This includes both (simulation) trials to assess the validity of our
assignments and additional interviews to confirm the presented results.

Often, with the occurrence of the considered weather event, the
number of VFR movements reduces. Hence, it would be interesting to
evaluate if this reduction has any influence on the impact on taskload
associated with different weather phenomena.
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