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Abstract
This study is about rescheduling freight trains to reduce the effects of major interruptions. In
this paper, we consider that the interruption is an unexpected marshalling-yard closure. We
develop a macroscopic Mixed-Integer Linear Programming (MILP) model to reschedule
railway timetables. One important principle is that we simultaneously reschedule several
trains, instead of one-by-one. Furthermore, we consider a rescheduling strategy of letting
trains wait on the way when the destination yard have a closure. The model considers
stopping restrictions and the capacity of each segment and station. The order of the trains
affected by the interruption is not fixed. We present experimental results of three different
cases, which are all based on artificial data.
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1 Introduction

Over decades, the mobility of both persons and goods has increased. The demand for rail-
way transportation has also grown. However, not all railway systems have expanded their
capacity accordingly. This has lead to situations where the railway network is congested,
and disturbances easily spread from train to train through the network. Thus, it becomes
more and more important to have a stable railway schedule. This can be achieved by im-
proving the robustness of timetables and the ability to recover to normal state after an in-
terruption. Our main interests in this paper are traffic-management related, including the
optimization models and their potential to handle major interruptions. In our application,
we consider an interruption only affecting a subset of the trains, for example, a temporarily
closure of the shunting yard.

During a closure of the marshalling yard, the majority of the trains are not able to be
driven in or out. Since these closures lead to a major interruption that in turn can lead to
cancellation of trains, congestion in the surrounding railway lines, and an indirect impact
on other trains.The process of rescheduling the trains may be similar for other unexpected
interruptions, which are often unpredictable and wide-ranging, such as natural disasters and
other incidents. Examples of such incidents previously mentioned in the literature include



flooding (Liu et al., 2018; Hamarat et al., 2021; Menan Hasnayn et al., 2017) and derailment
(Huang et al., 2021; Nelldal, 2014). In this paper, we consider the unexpected interruptions
in marshalling yards that lead to closures. Louwerse and Huisman (2014) mentioned that
interruptions lasting longer than one hour happen three times a day on average in the Nether-
lands. Nelldal (2014) indicates that major interruptions lasting up to several days occurred
once a year on average in Sweden from 2000 to 2013, and some of them happened within
marshalling yards. Marshalling yards consist of tracks and switches where different wagons
are sorted and combined with new trains driving to different destinations.

Our scenario is that a severe interruption occurs in a marshalling yard so that it has to
be closed and there is many freight trains along the rail line that need to be rescheduled. We
consider that there are a limited number of alternative formation marshalling yards avail-
able in the surrounding area and that the nearest one is several hours away. Due to the
interruption, the capacity for the incoming trains in the interrupted yard is limited.

The goal is to reschedule the affected traffic on a railway line connected to the inter-
rupted yard while disturbing other trains as little as possible and study the effects on the
railway line that connects with the affected yard. Thus, the rescheduling strategy includes
extending the stopping time in stations along the corridor for temporary parking and delay-
ing the departure time at the departing yard.

To summarize, we propose a mathematical model for rescheduling a railway timetable
when a group of freight trains must be postponed due to an unexpected marshalling-yard
closure. The model does not reschedule other trains, e.g., passenger trains, that are assumed
to be unaffected by the interruption. Capacity restrictions on tracks and in stations are
respected, and so are technical limitations in, e.g., speed and minimum headway.

This paper is organized as follows. In Section 2, we present related research. We de-
scribe the research problem in Section 3. In Section 4, we introduce the mathematical
model. We analyse the computational experiments in Section 5 and present the conclusions
in Section 6.

2 Related Work

In this section, we discuss different studies. These studies either have the topic of focusing
on rescheduling train schedules under major interruptions or the models that can be applied
on rescheduling the timetables.

Cacchiani et al. (2010) discussed the different definitions between minor disturbances
and major interruptions. Minor disturbances usually refer to a series of delays caused by a
minor delay of one train, which can easily be solved by rescheduling the timetable. A major
interruption refers to a series of severe delays and a large number of cancellations caused
by external incidents.

To our knowledge, the research on rescheduling at major interruptions is limited. Cur-
rent studies are mainly based on cyclic timetables since the research topic is mainly passenger-
oriented. Louwerse and Huisman (2014) mentioned that the rescheduling approach under a
major interruption normally starts with a timetable adjustment, which is followed by rolling
stock rescheduling and then crew rescheduling. They also consider the schedule of rolling
stock, since the focus is on rescheduling passenger trains with cyclic schedule. Delaying a
passenger train may affect the subsequent schedules of this train vehicle.

Other operation strategies for rescheduling passenger trains under major interruptions
include reordering trains, cancelling trains that have not departed, and shunting in stations



(Louwerse and Huisman, 2014; Zhan, 2015; Veelenturf et al., 2016; Cavone et al., 2019).
Furthermore, there are two main types of blockage in these studies. The two blockage types
are full blockages and partial blockages on the rail lines between two consecutive stations.
We consider the railway lines between stations as segments and each two parallel rail lines
as separate tracks. Veelenturf et al. (2016) mention that partial blockages refer to only
some tracks of one segment being blocked and other tracks are still functional, while a full
blockage is that all the tracks of one segment are blocked. Zhan (2015), Veelenturf et al.
(2016) and Cavone et al. (2019) only considered full blockages on the railway lines, while
Louwerse and Huisman (2014) studied both partial and full blockage scenarios.

There are three phases in the interruption management process. Phase one is transiting
from the original timetable to the rescheduled one. Phase two is running the rescheduled
timetable on the rail lines, and phase three is transiting from the rescheduled timetable to
the original one. Louwerse and Huisman (2014) only consider phase two, which is applying
the rescheduled timetable on the rail lines, while Zhan (2015), Veelenturf et al. (2016) and
Cavone et al. (2019) involved all three phases of the interruption management process.

Louwerse and Huisman (2014) developed an Integer Programming (IP) model to maxi-
mize the service level for passengers by minimizing the number of cancelled trains and the
delay of uncancelled trains. It includes rolling stock constraints in the model to make the
result easier to modify into a feasible rolling stock schedule. The model was tested on real-
world data. Veelenturf et al. (2016) extended Louwerse and Huisman’s model to an Integer
Linear Programming (ILP) model under different scenarios of partial or full blockages at
different locations at the same time and the option for rerouting trains and balancing the
timetable. The capacity of each station is considered in the model by tracking the availabil-
ity of each track in each station.

Cavone et al. (2019) considered full blockage of the rail line between two marshalling
yards. They introduced a MILP model and an innovative bi-level rescheduling algorithm to
fill the gap between macroscopic and microscopic modelling. They also included the rolling
stock in the yard through shunting constraints.

The adopted operation strategy for major interruption by Zhan (2015) is slightly dif-
ferent. They rescheduled the timetable only by retiming, reordering, and cancelling trains
without considering the options for rerouting, short-turning or rolling stock constraints.
They formulated a Mixed Integer Programming (MIP) model with the objective function
of minimizing the weighted sum of the number of cancelled trains and the delay for other
trains. They also tracked the stations’ capacities by calculating the difference in the number
of ingoing and outgoing trains to check the availability of tracks whenever there is a new
train planning to drive into this station.

Some of the models primarily developed for minor disturbances are also applicable
to major interruptions. For rescheduling the timetable under small disturbances, several
types of models have been suggested, including both non-cyclic (Törnquist and Persson,
2007; Gestrelius et al., 2015) and cyclic models (Jiang et al., 2014; Tan et al., 2020a; Tan
et al., 2020b). Törnquist and Persson (2007) introduced a MILP-based model to reschedule
timetables on a multiple tracked railway network during disturbances. The start time and
end time of every event are included as continuous variables, and the train order is con-
sidered as a binary variable. The purpose with the model is to reduce the delay as much
as possible, thus, the two objective functions are minimizing the total delay for all trains
at their destination station, and the weighted sum of both total final delays and the addi-
tional delay penalty. This model is extended by Törnquist Krasemann (2015) to include the



options of passing through and stopping at the stations.
Furthermore, there are some studies about inserting additional train service into an exist-

ing railway timetable, other than rescheduling the complete railway timetable (Burdett and
Kozan, 2009; Cacchiani et al., 2010; Jiang et al., 2017; Ljunggren et al., 2020). However, it
is very time-consuming to inserting a large number of trains.

Although different authors have studied the topic of handling major interruptions in
the railway system, to our knowledge, there is no model available that is applicable in our
case. Most of the previously proposed models aim at optimising the timetable from the
passenger’s view. Their scenarios mainly consider partial or complete closures at rail lines
between two stations. Furthermore, the schedule of passenger trains is different from the
schedule of freight trains. Freight trains have longer travel times, are typically composed of
waggons for several destinations, that need to be shunted or coupled/decoupled along the
route. Our rescheduling strategy focuses on rescheduling and extending the duration time at
stations instead of cancelling and short turning. Furthermore, the major interruptions within
the marshalling yard have, to the best of our knowledge, not yet been considered.

To summarize, we face several problems when trying to apply previously presented
models to our problem:

(i) The rail corridor involves both freight and passenger trains, while only some freight
trains (interrupted trains) require a completely new timetable whereas we allow limited
adjustments of the existing schedules of other trains.

(ii) The interrupted trains need to depart from the original yard within a certain time range
and are only allowed to arrive at the destination yard after the interruption is over.

(iii) The freight trains can have longer stopping time at some stations along the path to
extend their total travel time.

(iv) The computational time for the model should remain in an acceptable range.

3 Problem Description

We consider a rail corridor connecting Yard A with Yard B, There is a major interruption
at Yard B with anticipated duration and all trains coming to yard B during this time are
completely blocked. We allow the freight trains to stop at some selected sidetracks in each
station for both delaying the arrival time at yard B of interrupted trains and increasing the
rescheduling flexibility of the non-interrupted freight trains, so that we can avoid the can-
cellation of freight trains and congestion in yard A.

Segment 2 Station 2 Segment 3Station 1 Station 3Segment 1 Segment 4

Yard A Yard B

Figure 1: A rail-line example with two segments and three stations

In this paper, a segment refers to a set of tracks between two points, which can be either
a station, a yard, or track segment. A rail corridor refers to the long passage between two
yards. We denote the freight trains with a destination at the interrupted yard as interrupted
freight trains, all other freight trains are denoted as non-interrupted freight trains and all



passenger trains as non-interrupted passenger trains. We show an example of a rail line with
four rail segments and three stations in Figure 1. Both segments are double-tracked. Station
1 and 3 have two tracks and Station 2 has three tracks.

To simplify the problem, we assume that:

(i) All tracks are bi-directional.

(ii) It is possible to access all outgoing tracks from any track at the end of each segment
and station.

(iii) No train can be cancelled.

Figure 4 shows the capacity change for the incoming trains into Yard B over time. The
curve represents the reality whereas the green blocks depict how it is modelled. We consider
a maximum capacity for incoming trains into Yard B. Before the interruption, we assume
the capacity for incoming trains into Yard B, which is set to zero during the interruption.
After interruption occurs, the capacity immediately drops down to 0.

Yard A

Yard B

Station 1

Station 2

Station 3

interruption

5:00 6:00 7:00 8:004:00

interrupted trains in
rescheduled timetable

non-interrupted trains
in rescheduled timetable

Figure 2: Original timetable

Yard A

Yard B

Station 1

Station 2

Station 3

interruption

5:00 6:00 7:00 8:004:00

non-interrupted trains
in original timetable

interrupted trains in
original timetable

Figure 3: Rescheduled timetable

Figure 2 and Figure 3 give an example of rescheduling a timetable under a major in-
terruption in Yard B. In Figure 2, we show the original timetable on the line between Yard
A and Yard B. In Figure 3, we show the rescheduled timetable. Non-interrupted trains are
shown in green and yellow, and the interrupted trains are shown in blue. Orange refers to



the non-interrupted trains with different timetable after rescheduling, and green refers to the
non-interrupted trains with an unchanged timetable after rescheduling. There is a major in-
terruption in Yard B and the interrupted freight trains are either already on the way towards
Yard B or remain in Yard A when this interruption occurs. Thus, these interrupted trains
need to be rescheduled such that they arrive at Yard B after the interruption ends.

4 Mathematical Model

There are many optimization models for rescheduling railway timetables and the most com-
mon modelling approach is to build a MILP model. Törnquist and Persson (2007) presented
a MILP model that creates timetables on a multiple-tracked railway network and Törnquist
Krasemann (2015) extended it with options for passing through and stopping at stations,
where the train order is discrete, and time is continuous. Törnquist and Persson’s model has
constraints on basic train restrictions, technical restrictions at each track, and operator pref-
erences. We propose a mathematical model for rescheduling the railway timetable based on
Törnquist and Persson’s model. Their rescheduling model is an event-based MILP model
for a network with multiple tracks. The events include both the departure and arrival at any
station or line segment.

In our model, we make two main modifications:

(i) Stations’ and segments’ capacity: We track the occupation on each track in all seg-
ments and stations by introducing a new binary variable γi,j,k. Variable γi,j,k indi-
cates whether train i travels through track k on segment j. The conflict constraints in
the model ensure that each track can only be occupied by one train at a time. These
conflict constraints are only activated when two trains are assigned to the same track.
By solving the conflicts on each track in each segment and station separately, we can
avoid the situation that either a segment or station contains more trains than possible
because of its capacity limit.

(ii) Travel duration: Freight trains may need to stop at sidetracks along the path during
the interruption to extend the total travel time and postpone the arrival time at the des-
tination yard till the interruption ends. However, there are some technical restrictions
on stopping freight trains at some sidetracks, for example, the travelling direction, the
train length etc. In our model, we check whether a freight train is allowed to stop at
a track in a station by introducing a new binary parameter tti,j,k. This parameter can
affect the stopping duration of each train at each station. tti,j,k is set to 1 if train i
may stop at track k of segment j. If a train needs to pass a station, tti,j,k determines
whether this train has to pass without stopping or can stop at this station.

We assume the original timetable is conflict-free. We also suppose that our model is
applied after the interruption has started. Thus, our rescheduling model only takes care of
the second and third phases of the interruption management process with fixed paths for all
trains. In Figure 4, the second phase refers to the time duration between binter and einter,
which is the interruption. The third phase refers to the time duration between einter and tr,
which is called recovery time.
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Figure 4: The capacity change over time

Table 1: Sets

Index and Set Description
i Train i
j Segment j
k Track k
ℓi,j The event number for train i at segment j
T Set of all trains i, where T = T fre ∪ T pas

T fre Set of all freight trains
T pas Set of all passenger trains and the freight trains that have departed
J Set of railway segments and stations, where J = J t ∪ J s

J t Set of railway segments
J s Set of railway stations
Kj Set of tracks on segment j
Kpas Set of track segments that passenger trains are allowed to pass at all

stations
Kfre Set of track segments that non-interrupted freight trains are allowed to

pass at all stations
L Set of events ℓi,j for all trains

Table 2: Parameters

Parameters Description
nLi Event number for each train i
∆j Smallest headway on segment j, i.e., a train i cannot enter segment j

before the previous train has left and at least ∆j time units have passed
di,j Minimum duration for train i on segment or station j



bi,ℓi,j Planned start time for train i on segment or station j
ei,ℓi,j Planned end time for train i on segment or station j

bwin
i Maximum allowed deviation from the desired departure time for train

i from the departure station
tti,j,k Equals 1, if train i is allowed to stop at the track k on segment j, and

0 otherwise
ts The initial time of the origin timetable without any crew and rolling

stock schedule
te The end time of the origin timetable without any crew and rolling stock

schedule
binter The time point when the major interruption starts
einter The time point when the major interruption ends
tr The time point when the recovery process should end
Mdur Big M. Mdur is a large constant for the duration constraints and it

should be larger than the maximum allowed stopping time length at
one station.

M con Big M. M con is a large constant for the conflict constraints and it
should be larger than the total running time for two trains on one seg-
ment.

Table 3: Variables

Variables Description
xstart
i,ℓi,j

Start time for event ℓi,j of train i

xend
i,ℓi,j

End time for event ℓi,j of train i

λi,v,j Binary, event order on segment j: equals 1 if the event of train i occurs
before the event of train v, equals 0 otherwise

γi,j,k Binary, equals 1 if train i passes the track k on segment j

4.1 Constraints

Constraint (1) ensures that the events of each train are tightly connected, which means that
the end time for each event of each train equals the start time for this train’s next event.

xstart
i,ℓi,j+1 = xend

i,ℓi,j ∀i ∈ T ; j ∈ J ; ℓi,j ∈ L (1)

Constraints (2) and (3) fix the timetable for all passenger trains. Constraints (4) and (5)
fix the schedule before the interruption happens and after the recovery time.

xstart
i,ℓi,j = bi,ℓi,j ∀i ∈ T pas; j ∈ J ; ℓi,j ∈ L (2)



xend
i,ℓi,j = ei,ℓi,j ∀i ∈ T pas; j ∈ J ; ℓi,j ∈ L (3)

xstart
i,ℓi,j = bi,ℓi,j ∀i ∈ T fre; j ∈ J ; ℓi,j ∈ L : bi,ℓi,j ≥ tr ∨ bi,ℓi,j ≤ binter (4)

xend
i,ℓi,j = ei,ℓi,j ∀i ∈ T fre; j ∈ J ; ℓi,j ∈ L : bi,ℓi,j ≥ tr ∨ bi,ℓi,j ≤ binter (5)

Duration Constraints
The parameter di,j refers to the minimum duration for each train per track at a segment or
station. Constraint (6) makes sure that if the train passes one track of a rail segment, then
its duration time should be at least as long as the minimum duration on that segment. We
have xend

i,ℓi,j
−xstart

i,ℓi,j
≥ di,j when γi,j,k = 1. If γi,j,k = 0, then we have xend

i,ℓi,j
−xstart

i,ℓi,j
≥ 0.

Constraints (7) and (8) ensure that if the train is allowed to stop on a track at a station, then
it can either run through or stop at a track. We have xend

i,ℓi,j
− xstart

i,ℓi,j
≥ di,j when γi,j,k = 1

and tti,j,k = 1. If the train is not allowed to stop on a track of the station, then it can only
run on this track. Thus, we have xend

i,ℓi,j
-xstart

i,ℓi,j
= di,j when γi,j,k = 1 and tti,j,k = 0.

xend
i,ℓi,j ≥ xstart

i,ℓi,j + γi,j,kdi,j ∀i ∈ T ; j ∈ J t; k ∈ Kj ; ℓi,j ∈ L (6)

xend
i,ℓi,j ≥ xstart

i,ℓi,j + γi,j,kdi,j +Mdur(γi,j,k − 1) ∀i ∈ T ; j ∈ J s; k ∈ Kj ;

ℓi,j ∈ L (7)

xend
i,ℓi,j ≤ xstart

i,ℓi,j + γi,j,kdi,j +Mdur(1− γi,j,k + tti,j,k) ∀i ∈ T ; j ∈ J s;

k ∈ Kj ; ℓi,j ∈ L (8)

Conflicts and Headway Constraints
Constraints (9) and (10) ensure that each track can only be occupied by one train at a time.
Constraint (11) and (12) limit the value selection of variable λi,v,j . If the start time of a
train i is earlier than another train v at a segment or station j, then λi,v,j = 1, and λi,v,j = 0
if the start time of a train i is later than the start time of train v. Constraint (13) enforces
that only one track can be assigned to a train in a segment or station when this train passes
this segment or station. Constraint (14) and (15) limit the track number that passenger and
freight trains can choose at each station. The passenger and freight trains can only choose
the tracks that are included in the set Kpas and Kfre accordingly.

xstart
v,ℓv,j

− xend
i,ℓi,j ≥ ∆j +M con(λi,v,j + γi,j,kγv,j,k − 2) ∀i ∈ T ; v ∈ T ;

j ∈ J ; k ∈ Kj ; ℓi,j ∈ L (9)



xstart
i,ℓi,j − xend

v,ℓv,j
≥ ∆j +M con(γi,j,kγv,j,k − λi,v,j − 1) ∀i ∈ T ; v ∈ T ;

j ∈ J ; k ∈ Kj ; ℓi,j ∈ L (10)

(xstart
i,ℓi,j − xstart

v,ℓv,j
)λi,v,j ≤ 0 ∀i ∈ T ; v ∈ T ; j ∈ J ; ℓi,j ∈ L (11)

(xstart
i,ℓi,j − xstart

v,ℓv,j
)(1− λi,v,j) ≥ 0 ∀i ∈ T ; v ∈ T ; j ∈ J ; ℓi,j ∈ L (12)

∑
k∈Kj

γi,j,k = 1 ∀i ∈ T ; j ∈ J ; ℓi,j ∈ L (13)

γi,j,k = 0 ∀i ∈ T pas; j ∈ J s; k ∈ K\Kpas; ℓi,j ∈ L (14)

γv,j,k = 0 ∀i ∈ T fre; j ∈ J s; k ∈ K\Kfre; ℓi,j ∈ L (15)

Constraint (16) gives the range for variables xstart
i,ℓi,j

and xend
i,ℓi,j

. These two variables are
continuous variables, which are larger or equal to ts. Constraints (17) and (18) indicate
λi,v,j and γi,j,k are binary variables.

xstart
i,ℓi,j , x

end
i,ℓi,j ≥ ts ∀i ∈ T ; j ∈ J ; ℓi,j ∈ L (16)

λi,v,j ∈ {0, 1} ∀i ∈ 1, ..., |T | − 1; v ∈ T ; j ∈ J (17)

γi,j,k ∈ {0, 1} ∀i ∈ 1, ..., |T | − 1; j ∈ J ; k ∈ Kj (18)

Deviation Constraints
Constraint (19) and (20) limit the end time for all interrupted trains at the destination yard
within a certain range: to within the interval [einter, einter + bwin]. Constraint (21) limits the
start time at the origin yard for the interrupted trains. The interrupted trains can only be
delayed at the origin yard. The non-interrupted trains are only allowed to depart later than
the originally scheduled time, which is enforced in Constraint (22).

xend
i,nLi

≥ einter ∀i ∈ T fre; j ∈ J ; ℓi,j ∈ L : binter ≤ ei,ℓi,nLi
≤ einter

∧ ℓi,nLi
= nLi (19)



xend
i,nLi

≤ einter + bwin ∀i ∈ T fre; j ∈ J ; ℓi,j ∈ L :

binter ≤ ei,ev(i,nLi) ≤ einter ∧ ℓi,nLi
= nLi (20)

xstart
i,1 ≥ bi,1 ∀i ∈ T fre; j ∈ J ; ℓi,j ∈ L : binter ≤ ei,ℓi,nLi

≤ einter

∧ ℓi,nLi = nLi (21)

xstart
i,ℓi,j ≥ bi,ℓi,j ∀i ∈ T fre; j ∈ J ; ℓi,j ∈ L : einter ≤ bi,ℓi,nLi

∨ bi,ℓi,nLi
≤ binter ∨ ℓi,nLi

̸= nLi (22)

4.2 Objectives

We consider three objective functions in this model. The first one is to minimize the devia-
tion from the original schedule for all non-interrupted freight trains. We will use ‘Deviation’
to represent this objective in the remainder of this paper. The variable zi is a continuous
variable, which equals the absolute value of the difference between xstart

i,ℓi,j
and bi,ℓi,j for all

non-interrupted trains at each event. We sum up for all the freight trains that are either orig-
inally scheduled to arrive the interrupted yard after interruption (einter ≤ bi,ℓi,nLi

) or before
interruption (bi,ℓi,nLi

≤ binter) or run towards the opposite direction (ℓi,nLi ̸= nLi).

f1 =
∑

i∈T fre:einter≤bi,ℓi,nLi
∨bi,ℓi,nLi

≤binter∨ℓi,nLi
̸=nLi

zi

xstart
i,ℓi,j − bi,ℓi,j ≤ zi ∀i ∈ T fre; j ∈ J ; ℓi,j ∈ L : einter ≤ bi,ℓi,nLi

∨ bi,ℓi,nLi
≤ binter ∨ ℓi,nLi ̸= nLi (23)

xstart
i,ℓi,j − bi,ℓi,j ≥ −zi ∀i ∈ T fre; j ∈ J ; ℓi,j ∈ L : einter ≤ bi,ℓi,nLi

∨ bi,ℓi,nLi
≤ binter ∨ ℓi,nLi

̸= nLi (24)

zi ≥ 0 ∀i ∈ T fre : einter ≤ bi,ℓi,nLi
∨ bi,ℓi,nLi

≤ binter

∨ ℓi,nLi ̸= nLi (25)

In the second objective function, the goal is to minimize the sum of the total running
time for all interrupted trains, which we call ‘Transport Time’. We sum up for all the freight
trains that are both originally scheduled to arrive the interrupted yard during interruption



(binter ≤ ei,ℓi,nLi
≤ einter) and run in the direction towards the interrupted yard (ℓi,nLi

=
nLi).

f2 =
∑

i∈T fre:binter≤ei,ℓi,nLi
≤einter∧ℓi,nLi

=nLi

(xend
i,nLi

− xstart
i,1 )

In the third objective function, the goal is to find a feasible solution. We use ‘Feasible’
to represent this objective function.

f3 = 1

The problem formulation can be summarized as:

min f

subject to: constraint (1) - (22)
constraint (23) - (25) , if f = f1

where f ∈ {f1, f2, f3}

5 Computational Experiments

In this section, we run our computational experiments based on artificial data and discuss
the results with different parameter settings. This section aims to show the feasibility of our
proposed model and to illustrate its performance. The data sets used in the case studies are
artificial, moreover, the data set for Case Study III is of a reasonable size for a real-world
application. The model was solved using AMPL and the server Gurobi 7.5.2 on a com-
putational server. In the case studies, we consider ’Yard B’ is the interrupted marshalling
yard.

5.1 Case Study I

In this case, the instance is a timetable that includes 20 passenger trains and 5 freight trains.
The schedule of passenger trains is homogeneous and symmetrical. Four of the freight trains
run towards Yard B and one freight trains runs to Yard A. We assume that all freight trains
are allowed to stop at any two side tracks in each station. Furthermore, the arrival time
deviates within a given range for all interrupted trains at the Yard B. All the stations have
4 tracks and segments have two tracks. The interruption duration is set to 30 minutes, and
the recovery time is set to 1 hour. The parameter bwin is 50 minutes, and we assume that
the freight trains can only take half of the tracks in all stations. Figure 6 shows the artificial
timetable as the input of the model.

In Table 4, we display the average and maximum computational time with different
objective functions. As we can see from Table 4, the computational time with objective
function ‘Feasible’ (f3) is the shortest with on average 0.33 seconds. The computational
time for ‘Deviation’ is slightly larger than that for ‘Feasible’; for ’Transport Time’ it is
around 200 seconds.



Table 4: The computational times with different objective functions
Computation Time (s)

Objective Function Average Max
’Feasible’ (f3) 0.33 0.34

’Deviation’ (f1) 2.11 2.40
’Transport Time’ (f2) 200.13 200.21

Both Table 5 and 6 show results for the objective function of ’Transport Time’. Ta-
ble 5 includes the average and maximum deviation of start time at the origin yard for all
interrupted trains, and the average and maximum delay at the destination yard for all non-
interrupted trains. When the value of bwin increases, the start-time deviation of interrupted
trains and the delay for non-interrupted trains also increase.

Table 5: Results with different value of bwin

Interrupted trains
at Yard A

Non-interrupted trains
at Yard B

bwin
Objective
function

(min)

Average
departure

time deviation
(min)

Maximum
departure

time deviation
(min)

Average
delay
(min)

Maximum
delay
(min)

10 73 6 13 1 2
20 72 11 23 3 9
30 72 11 23 3 9
40 72 11 23 4 10
50 72 11 23 4 10
60 72 21 43 4 11

Table 6: results with different values of tti,j,k
Interrupted trains Non-interrupted trains

∑
k∈Kj

tti,j,k

Average arrival
time deviation

at yard B
(min)

Average delay
from

Yard B
(min)

Average
increase of

stopping time
(min)

Average
increase of the
running time

(min)
Full 27.5 8 6 1
Half 23.5 4 3 0

Single 22.5 4 0 0

Table 6 shows the average arrival time deviation at the destination yard for interrupted
trains, the average delay from destination yard, average increase of stopping time and run-
ning time for all non-interrupted trains. ’Full’ indicates that the freight trains are allowed
stop at all tracks at each station, which can be represented with

∑
k∈Kj

1. ’Half’ indicates
that the freight trains are allowed to stop at half of the tracks at all stations, which can be
represented with 0.5 ·

∑
k∈Kj

1. As for ’Single’, it indicates that the freight trains are only
allowed to stop on one track at each station. In Table 6, the average arrival time deviation at
the destination yard and the average delay to the destination yard decrease with a decrease



of
∑

k∈Kj

tti,j,k—which is an unexpected behavior. A possible explanation is that we have

different schedules with the same optimal objective value and we do not steer towards a
specific value for these metrics.

Figure 5: The original timetable (Case I)

Figure 5 shows the original timetable in Case I. The interruption duration is marked
as a red block. Figure 6 and Figure 7 dispict the rescheduled timetable with the objective
function of ‘Deviation’ f1 and ‘Transport Time’ f2, respectively. Freight trains are shown
in blue, passenger trains are shown in yellow. In Figure 6, the interrupted trains stop at
Station 3 for a while and then run towards Yard B. Some non-interrupted freight trains are
also delayed in Station 2, Station 3 and Yard B. In Figure 7, the non-interrupted trains have
less stopping time in total, but the total deviation of the arrival time for all non-interrupted
trains is larger than for the rescheduled result of ‘Deviation’.

Figure 6: The rescheduled timetable with objective function of f1 ’Deviation’



Figure 7: The rescheduled timetable with objective function of f2 ’Transport Time’

5.2 Case Study II

In Case II, we consider the number of segments and stations remains the same as in Case I,
so is the number of tracks in each segment and station. The initial timetable has 20 passenger
trains and 5 freight trains. In Figure 8, freight trains are shown in blue and passenger trains
are shown in yellow and green with different speed.

Figure 8: The original timetable (Case II)

In Table 7, we show the computational result with different interruption, recovery times,
and different objective functions. The result includes the number of interrupted trains, the
average delay of interrupted trains for the objective function f1 ’Deviation’, and the average
delay of non-interrupted trains for f2 ’Transport Time’. The number of interrupted trains
increases while the interruption time increases. The average of interrupted trains and the
average delay of non-interrupted trains also increase while the interruption time increases.



Table 7: Results with different interruption and recovery time
‘Deviation’ ‘Transport Time’

Interruption
time (min)

Recovery
time (min)

Average number of
interrupted trains

Average delay of
interrupted trains

Average delay of
non-interrupted trains

10 20 1.0 13.0 10.7
10 30 1.0 24.7 9.3
20 20 1.3 34.7 10.7
20 40 1.3 34.0 12.7
20 60 1.0 35.7 24.3
30 30 1.7 35.0 27.0
30 60 1.7 43.7 35.7

5.3 Case Study III

The instance is a timetable that includes 120 passenger trains and 30 freight trains with 76
segments and 75 stations along the rail line. We assume that each rail segment is double-
tracked, and each station has four tracks. Figure 9 shows the artificial timetable. Freight
trains are shown in blue and passenger trains are shown in green. There are 60 passenger
trains and 20 freight trains in one direction, and 60 passenger trains and 10 freight trains in
the other direction. The departure-time difference from the same yard between two consec-
utive passenger trains is 40 minutes. The departure-time difference from Yard B between
two consecutive freight trains is 4 hours, and 2 hours from Yard A. The stopping time for
passenger trains at station 37 is set to 10 minutes, and freight trains are set to 20 minutes.

Figure 9: The original timetable (Case III)

In Table 8, we show the minimum, average and maximum computational time and the
number of variables and constraints. Delayed events refer to the number of events for all
freight trains with delayed schedule. Total average delay refers to the average delay at the
destination yard for all freight trains. The objective function remains as the deviation of all



Table 8: Results with different values of interruption and recovery time
Computational Time (s)

Interruption
(h)

Recovery
Time (h) Min Average Max Variable

number
Constraint

number
Delayed
Events

Total
Average
Delay

1 1 16.8 24.0 28.4 78670 5810920 15 14
1 2 46.4 47.4 49.2 94681 5872420 39 14
1 3 57.6 62.4 67.5 112870 5940510 12 14
2 2 60.6 61.7 62.3 112870 5940550 88 74
2 4 78.3 79.1 80.6 146104 6068580 12 292
3 3 107.8 112.0 120.1 146103 6067670 101 127.5
3 6 1679.5 1838.1 1996.7 195416 6258560 76 87.5

non-interrupted freight trains, and the value of bwin equals to the recovery time duration.
All freight trains are allowed to stop at only two side tracks at each station. In this case,
the computational time also grows as the duration of recovery time grows. Furthermore, the
number of variables and constraints increase significantly if the interruption and recovery
time lengths increase. The number of variables doubled when the total duration of inter-
ruption and recovery time doubled from 2 hours to 4 hours. Furthermore, when the sum of
total duration of interruption and recovery time is the same, the numbers of variables and
constraints are also roughly the same.

6 Conclusion and Further Research

In this paper, we introduced a MILP model for rescheduling a railway timetable during a
major interruption, which postpones a group of (freight) trains. Other (passenger) trains may
not be moved to accommodate the rescheduled train paths. In the MILP model, we consider
the capacity limit for each segment and station by forbidding the conflicts at segments and
stations. We also limit the train types that are allowed to stop on each track in each station.

In our numerical experiments with a fictive case, the computational time is strongly af-
fected by the objective function. The calculation time for ’Deviation’ is approximately 6
times longer than for ’Feasible’ and for ’Transport Time’ 100 times longer than for ’Devi-
ation’. The computational test also showed that the increasing delay of the non-interrupted
freight trains is affected to a great extent by the rise of both interruption and recovery du-
ration. The objective function ’Deviation’ causes more severe delay for the interruption
freight trains than non-interrupted trains. Furthermore, the value changing of parameter
bwin and tti,j,k has a severe impact on the delay and the stopping time at all stations in the
rescheduled timetable. We noticed that when the interruption and recovery time increase,
the space and computational time increase a lot accordingly.

This model still needs further improvements in terms of model size and computation
time, if it is to be applied in a practical case. As the amount of data increases in the experi-
ments, both space and time complexity are increasing rapidly.

For future research, there are three main aspects. Firstly, we consider to reduce the size
of the model, especially the number of binary variables. Secondly, we consider to extend
the current model aiming to apply it on a network instead of a rail corridor. Thirdly, we
consider the possibility to include alternative geographical routes for some of the trains.
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