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Computational Complexity 
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Holes

⟺
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So-called “Art Gallery Theorems”: x guards are always sufficient and sometimes necessary to guard a 
polygon with n vertices (polygon from a specific class)
•  Simple polygon with n vertices:         are sometimes necessary and always sufficient. [Chvátal ’75]

Computational Complexity
•  The AGP is NP-hard for  point guards with holes [O’Rourke & Supowit 1983] , vertex guards without holes 
[Lee & Lin 1986],  point guards without holes [Aggarwal 1986]; point guards without holes is ∃R-hard 
[Abrahamsen et al. 2021]

Algorithms
•  Depending on complexity: approximation algorithms, efficient algorithms for optimal solutions for many 
instances, heuristics; polytime algorithms

Other structural results
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⇒visible from the 2-transmitter
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Place lights,  
assign energy (= brightness).

1
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Minimize total energy.

Chromatic AGP:
Given: a polygon P 

Task:   find a min guard cover of P

Find a colored guard cover of P: 
No point in P is seen by two guards 
of the same color.

We do not care about the 
number of guards, but 
about the number of 
colors!

Capabilities of the guards 
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We can alter: 
•  Capabilities of the guards                                                  • Environment to be guardedEnvironment to be guarded

Rectilinear polygons

Guard a 1.5D-Terrain
•  With guards on the terrain
•  With guards on an altitude line above the 
terrain

Traditionally: 
Simple polygons or polygons 
with holes

Holes

⟺

Simple polygon:  
• Does not 
intersect itself 

•  No holes

Alter the polygon class: 
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Image source: Gunnar Flötteröd, Waterborne Urban Mobility, Final Project Report
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- Demand in granularity of square cells
- Customers willing to walk a certain distance
- Same distance bound for the complete city
- City ➜ Polyomino (➜ alter the environment)
- Walking only within the polyomino

• Goal: Place as few CS stations as possible to serve 
the complete city
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• So, what can a station serve?

- All unit squares of the polyomino reachable 
when walking inside the polyomino for at most 
the given walking range

- Walking range k 
- “Visibility”: We can look around corners for k ≥2
➡ Alter the capabilities of the guard

13
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• Polyomino: connected polygon P in plane,                                                     

formed by joining m unit squares on the square lattice
• Dual graph GP is a grid graph
• Unit square v∈P k-hop visible to unit square u∈P, if shortest path from u to v 

in GP has length at most k.
Minimum k-hop Guarding Problem (MkGP)
Given: Polyomino P, range k
Find: Minimum cardinality unit-square guard cover in P under k-hop 
visibility.

14

k=3
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Minimum k-Hop Dominating Set Problem (MkDSP)
Given: Graph G
Find: Minimum cardinality Dk ⊆ V(G), each graph vertex connected to vertex 
in Dk with a path of length at most k. 
MkDSP is NP-complete in general graphs.
➡ We want to solve MkDSP in grid graphs

15
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If the dual graph of the partition obtained by extending all 
polygon edges through incident reflex vertices is a tree

[*] Ana Paula Tomás. Guarding thin orthogonal polygons is hard. In Fundamentals of Computation Theory (FCT), pages 305–316, 2013. 
[#] Therese C. Biedl and Saeed Mehrabi. On r-guarding thin orthogonal polygons. In International Symposium on Algorithms and Computation (ISAAC), pages 17:1–17:13, 2016. 
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If the dual graph of the partition obtained by extending all 
polygon edges through incident reflex vertices is a tree

[*] Ana Paula Tomás. Guarding thin orthogonal polygons is hard. In Fundamentals of Computation Theory (FCT), pages 305–316, 2013. 
[#] Therese C. Biedl and Saeed Mehrabi. On r-guarding thin orthogonal polygons. In International Symposium on Algorithms and Computation (ISAAC), pages 17:1–17:13, 2016. 

Rectilinear visibility/ r-visibility: 

Two points are r-visible to each other 
if there exists a rectangle in P 
that contains both points.
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(t+1)x(t+1)
• Analogously: grid graph G is t-thin if the polyomino for 

which G is the dual graph is t-thin
• Polyomino is simple if it has no holes (every inner face 

in dual grid graph has unit area)
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VC dimension: largest d, such that there exists a polyomino P and a set of d unit-square guards D that can be 
shattered.
Has been studied for different guarding problems (e.g., for simple polygons, ordinary visibility VC dimension 
in [6,14])
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Theorem 1: For any k∈ℕ, the VC dimension of k-hop visibility in a simple 
polyomino is 3. 

Theorem 2: For large enough k∈ℕ, the VC dimension of k-hop visibility in a  
polyomino with holes is 4. 

25



Click to edit Master title styleFor Upper Bounds: Rest Budget
• Rest budget of unit square g∈P at a unit square c∈P: rb(g,c)=max{k-d(g,c),0}
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Rest-Budget Observation: 
Let P be a polyomino, and let g and u be two unit squares in P such that a 
shortest path between them contains a unit square c. Then the following holds: 
1. The unit square g covers u, if and only if u is within distance rb(g,c) from c. 
2. For any unit square g’ with rb(g’,c) > rb(g,c), if g covers u, then so does g’.
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Rest-Budget Lemma: 
Let a,c be two unit squares in a simple polyomino P, such that P does not cross the line 
segment ac that connects their center points. Let Pac be some path in the dual graph GP 
between the center points of a and c, and let b be a unit square whose center point belongs 
to the area enclosed within Pac○ ac. Then there exists a unit square x on  such that rb(b,x) ≥ 
rb(a,x) and rb(b,x) ≥ rb(c,x).
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Let a,c be two unit squares in a simple polyomino P, such that P does not cross the line 
segment ac that connects their center points. Let Pac be some path in the dual graph GP 
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- If b is above c: x is unit square on Pac directly above b
- If b is left of a: x is unit square on Pac directly to left of b
- If b is within axis-aligned bounding box of a and c

-Slope of ac is ≤1: bc is our x (➜Figure)
-Slope of ac is >1: ba is our x
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For larger k: keep placement of guards, but polyomino is a large rectangle that 
contains all k-hop visibility regions. Because of the relative position of the 
guards, all guards are still shattered.
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• Upper bound of 4 for VC dimension in hypergraphs of pseudo disks [*]
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[*] Boris Aronov, Anirudh Donakonda, Esther Ezra, and Rom Pinchasi. On pseudodisk hypergraphs. Computational Geometry, 92:101687, 2021
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• Upper bound of 4 for VC dimension in hypergraphs of pseudo disks [*]
• But: k-hop visibility regions of unit squares in polyominoes with holes are not 

pseudo disks

30

[*] Boris Aronov, Anirudh Donakonda, Esther Ezra, and Rom Pinchasi. On pseudodisk hypergraphs. Computational Geometry, 92:101687, 2021
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Extend the edges at locations marked with ╳:
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guards that see them)

Larger even k?
Extend the edges at locations marked with ╳:
• Alternate between the white and gray crosses
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For k=18
d=4➜24=16 viewpoints (marked with the guard labels of 
guards that see them)

Larger even k?
Extend the edges at locations marked with ╳:
• Alternate between the white and gray crosses
• At ╳: insert two unit squares
• At ╳: insert one unit square
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For k=19 
d=4➜24=16 viewpoints (marked with the guard labels of 
guards that see them) 

Larger odd k? 
Extend the edges at locations marked with ╳: 
• Alternate between the white and gray crosses 
• At ╳: insert two unit squares 
• At ╳: insert one unit square
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polyomino with holes is 4.

Still to show: an upper bound of 4
Assume that we place five unit-square guards g1, g2, g3, g4, and g5 that can be 
shattered.
Pi,j, i≠j∈{1,…,5}: shortest path from guard gi to guard gj along which viewpoint v{i,j} is 
located
➜ Pi,j includes the shortest path from gi to v{i,j} and the shortest path from gj to v{i,j}
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➜ We need to embed the graph G4p: 
G4p contains edges representing paths P1,2, P1,3, P1,4, P2,3, P2,4, and P3,4

Face fi is incident to all guards in {g1, g2, g3, g4} except for gi

Theorem for simple polyominoes ➜ one of the four faces (actually f1, f2, or f3) contains a hole
We need to place the fifth guard in one of the four faces, let it be fi

Guard gi is not incident to fi

➜ Path Pi,5 must intersect at least one of the other paths represented by the edges in our graph: Pj,l

➜ One of the viewpoints v{i,5} and v{j,l} cannot be realized (a guard from the other pair will always 
see such a viewpoint)
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↯
Rest-budget observation



Computational Complexity: NP-Completeness for 1-
Thin Polyominoes with Holes*

* Without holes: the dual is a tree, and we can solve it in linear time!
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• Theorem 3: For every k≥2, the decision version of the MkGP is NP-

complete, even in 1-thin polyominoes with holes. 
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• Theorem 3: For every k≥2, the decision version of the MkGP is NP-

complete, even in 1-thin polyominoes with holes. 
• Membership in NP✔
• We reduce from PLANAR MONOTONE 3SAT
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A Linear-Time 4-Approximation for Simple 2-Thin 
Polyominoes
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• There is a PTAS for k-hop domination in H-minor free graphs based on local search [*], but 

runtime may be infeasible for extremely large n

39

[*] Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In Symposium on Theory of Computing, pages 342–355, 2021. 
[#] Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In International Symposium on Parameterized and Exact 
Computation (IPEC), pages 8:1–8:23, 2017. 
[+] A. Karim Abu-Affash, Paz Carmi, and Adi Krasin. A linear-time algorithm for minimum k-hop dominating set of a cactus graph. Discrete Applied Mathematics, 320:488–499, 2022



Click to edit Master title styleLinear-Time 4-Appx for Simple 2-Thin Polyominoes
• There is a PTAS for k-hop domination in H-minor free graphs based on local search [*], but 

runtime may be infeasible for extremely large n
• Exact algorithm for graphs with treewidth tw has runtime O((2k+1)tw n)

39

[*] Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In Symposium on Theory of Computing, pages 342–355, 2021. 
[#] Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In International Symposium on Parameterized and Exact 
Computation (IPEC), pages 8:1–8:23, 2017. 
[+] A. Karim Abu-Affash, Paz Carmi, and Adi Krasin. A linear-time algorithm for minimum k-hop dominating set of a cactus graph. Discrete Applied Mathematics, 320:488–499, 2022



Click to edit Master title styleLinear-Time 4-Appx for Simple 2-Thin Polyominoes
• There is a PTAS for k-hop domination in H-minor free graphs based on local search [*], but 

runtime may be infeasible for extremely large n
• Exact algorithm for graphs with treewidth tw has runtime O((2k+1)tw n)

• 2-thin polyominoes have tw=2, as K4 is not a minor

39

[*] Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In Symposium on Theory of Computing, pages 342–355, 2021. 
[#] Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In International Symposium on Parameterized and Exact 
Computation (IPEC), pages 8:1–8:23, 2017. 
[+] A. Karim Abu-Affash, Paz Carmi, and Adi Krasin. A linear-time algorithm for minimum k-hop dominating set of a cactus graph. Discrete Applied Mathematics, 320:488–499, 2022



Click to edit Master title styleLinear-Time 4-Appx for Simple 2-Thin Polyominoes
• There is a PTAS for k-hop domination in H-minor free graphs based on local search [*], but 

runtime may be infeasible for extremely large n
• Exact algorithm for graphs with treewidth tw has runtime O((2k+1)tw n)

• 2-thin polyominoes have tw=2, as K4 is not a minor
• But runtime may be too high if k=Ω(n)

39

[*] Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In Symposium on Theory of Computing, pages 342–355, 2021. 
[#] Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In International Symposium on Parameterized and Exact 
Computation (IPEC), pages 8:1–8:23, 2017. 
[+] A. Karim Abu-Affash, Paz Carmi, and Adi Krasin. A linear-time algorithm for minimum k-hop dominating set of a cactus graph. Discrete Applied Mathematics, 320:488–499, 2022



Click to edit Master title styleLinear-Time 4-Appx for Simple 2-Thin Polyominoes
• There is a PTAS for k-hop domination in H-minor free graphs based on local search [*], but 

runtime may be infeasible for extremely large n
• Exact algorithm for graphs with treewidth tw has runtime O((2k+1)tw n)

• 2-thin polyominoes have tw=2, as K4 is not a minor
• But runtime may be too high if k=Ω(n)

• Runtime of our algorithm does not depend on k

39

[*] Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In Symposium on Theory of Computing, pages 342–355, 2021. 
[#] Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In International Symposium on Parameterized and Exact 
Computation (IPEC), pages 8:1–8:23, 2017. 
[+] A. Karim Abu-Affash, Paz Carmi, and Adi Krasin. A linear-time algorithm for minimum k-hop dominating set of a cactus graph. Discrete Applied Mathematics, 320:488–499, 2022



Click to edit Master title styleLinear-Time 4-Appx for Simple 2-Thin Polyominoes
• There is a PTAS for k-hop domination in H-minor free graphs based on local search [*], but 

runtime may be infeasible for extremely large n
• Exact algorithm for graphs with treewidth tw has runtime O((2k+1)tw n)

• 2-thin polyominoes have tw=2, as K4 is not a minor
• But runtime may be too high if k=Ω(n)

• Runtime of our algorithm does not depend on k
• Idea: construct a tree T on the polyomino P and let T guide us in placing guards

39

[*] Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In Symposium on Theory of Computing, pages 342–355, 2021. 
[#] Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In International Symposium on Parameterized and Exact 
Computation (IPEC), pages 8:1–8:23, 2017. 
[+] A. Karim Abu-Affash, Paz Carmi, and Adi Krasin. A linear-time algorithm for minimum k-hop dominating set of a cactus graph. Discrete Applied Mathematics, 320:488–499, 2022



Click to edit Master title styleLinear-Time 4-Appx for Simple 2-Thin Polyominoes
• There is a PTAS for k-hop domination in H-minor free graphs based on local search [*], but 

runtime may be infeasible for extremely large n
• Exact algorithm for graphs with treewidth tw has runtime O((2k+1)tw n)

• 2-thin polyominoes have tw=2, as K4 is not a minor
• But runtime may be too high if k=Ω(n)

• Runtime of our algorithm does not depend on k
• Idea: construct a tree T on the polyomino P and let T guide us in placing guards
• Inspired by the linear-time algorithm for trees [+]

39

[*] Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In Symposium on Theory of Computing, pages 342–355, 2021. 
[#] Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In International Symposium on Parameterized and Exact 
Computation (IPEC), pages 8:1–8:23, 2017. 
[+] A. Karim Abu-Affash, Paz Carmi, and Adi Krasin. A linear-time algorithm for minimum k-hop dominating set of a cactus graph. Discrete Applied Mathematics, 320:488–499, 2022



Click to edit Master title styleLinear-Time 4-Appx for Simple 2-Thin Polyominoes
• There is a PTAS for k-hop domination in H-minor free graphs based on local search [*], but 

runtime may be infeasible for extremely large n
• Exact algorithm for graphs with treewidth tw has runtime O((2k+1)tw n)

• 2-thin polyominoes have tw=2, as K4 is not a minor
• But runtime may be too high if k=Ω(n)

• Runtime of our algorithm does not depend on k
• Idea: construct a tree T on the polyomino P and let T guide us in placing guards
• Inspired by the linear-time algorithm for trees [+]
• In each iteration, we place 1, 2, or 4 guards and 1 witness

39

[*] Arnold Filtser and Hung Le. Clan embeddings into trees, and low treewidth graphs. In Symposium on Theory of Computing, pages 342–355, 2021. 
[#] Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In International Symposium on Parameterized and Exact 
Computation (IPEC), pages 8:1–8:23, 2017. 
[+] A. Karim Abu-Affash, Paz Carmi, and Adi Krasin. A linear-time algorithm for minimum k-hop dominating set of a cactus graph. Discrete Applied Mathematics, 320:488–499, 2022



Click to edit Master title styleLinear-Time 4-Appx for Simple 2-Thin Polyominoes
• There is a PTAS for k-hop domination in H-minor free graphs based on local search [*], but 

runtime may be infeasible for extremely large n
• Exact algorithm for graphs with treewidth tw has runtime O((2k+1)tw n)
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• But runtime may be too high if k=Ω(n)
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• Idea: construct a tree T on the polyomino P and let T guide us in placing guards
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• There is a PTAS for k-hop domination in H-minor free graphs based on local search [*], but 

runtime may be infeasible for extremely large n
• Exact algorithm for graphs with treewidth tw has runtime O((2k+1)tw n)

• 2-thin polyominoes have tw=2, as K4 is not a minor
• But runtime may be too high if k=Ω(n)

• Runtime of our algorithm does not depend on k
• Idea: construct a tree T on the polyomino P and let T guide us in placing guards
• Inspired by the linear-time algorithm for trees [+]
• In each iteration, we place 1, 2, or 4 guards and 1 witness
• Cardinality of witness set is a lower bound
➡ 4-approximation
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3. u and v belong to the same cell s and both other vertices belonging to s are not internal

• P 2-thin ➜ with edges from 1. we cannot create a four-cycle
• Cycle with edges from 2. or 3. ➜ P would have a hole
➡ Edges from EI form a forest TI  on I
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- If s’ has two internal vertices v and u:
✴ Add artificial node xv,u to set X
✴ Add edges {bs, xv,u},  {u, xv,u}, and {v, xv,u} to Econ

✴ Remove edge {u,v} from EI 
• T graph on vertex set V=I∪B∪X and edge set E=EI∪EB∪Econ
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• Connect TI  and TB

• Let s be a boundary square that shares an edge with a non-boundary square s’
➡ s’ has at most two internal vertices

- If s’ has a single internal vertex v: add {bs, v} to Econ

- If s’ has two internal vertices v and u:
✴ Add artificial node xv,u to set X
✴ Add edges {bs, xv,u},  {u, xv,u}, and {v, xv,u} to Econ

✴ Remove edge {u,v} from EI 
• T graph on vertex set V=I∪B∪X and edge set E=EI∪EB∪Econ

• When we connect TI and TB no cyles are created ➜ T is a tree and max degree is 4
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• With each node v∈T, we associate a block S(v) of unit squares:
- v=xu,v∈X: S(v) are the two unit squares with the edge {u,v}
- v∈I: S(v) is the 2x2 block with internal vertex v
- v=bs∈B: S(v)={s}
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M(s)=set of all these cells for which the distance is assumed for s
• We set hs(Tu)= maxs’∈M(s)  dP(s,s’)
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M(s)=set of all these cells for which the distance is assumed for s
• We set hs(Tu)= maxs’∈M(s)  dP(s,s’)
• If h(Tu)=k and we pick S(u) for the guard set ➜ every unit square associated with a node in Tu guarded
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- If at the end we have rbD(s)=-1 for some s∈S(r): add S(r) to D
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Theorem 4: There is a linear-time algorithm 
computing a 4-approximation for the MkGP in 
simple 2-thin polyominoes.
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computing a 4-approximation for the MkGP in 
simple 2-thin polyominoes.
Proof:
We only remove a node v from T if S(v) is covered by cells in D. 
∪v∈TS(v)=P➜ D is a k-hop visibility guard set
We show: for each node in sequence  u1,…ul of T for which we added S(ui) to D, we can find a witness 
square si in Tu_i, such that no two witness squares si≠sj have a single unit square in P within hop 
distance k from both
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∪v∈TS(v)=P➜ D is a k-hop visibility guard set
We show: for each node in sequence  u1,…ul of T for which we added S(ui) to D, we can find a witness 
square si in Tu_i, such that no two witness squares si≠sj have a single unit square in P within hop 
distance k from both
➜ OPT ≥ l
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Theorem 4: There is a linear-time algorithm 
computing a 4-approximation for the MkGP in 
simple 2-thin polyominoes.
Proof:
We only remove a node v from T if S(v) is covered by cells in D. 
∪v∈TS(v)=P➜ D is a k-hop visibility guard set
We show: for each node in sequence  u1,…ul of T for which we added S(ui) to D, we can find a witness 
square si in Tu_i, such that no two witness squares si≠sj have a single unit square in P within hop 
distance k from both
➜ OPT ≥ l
We add at most 4 unit squares to D in each step: |D|≤4l
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• Complexity in arbitrary simple polyominoes? 
• More general approximation framework for arbitrary k in arbitrary simple 

polyominoes? (Or polytime algorithm??) 
• Constant-factor approximation for polyominoes with holes? 
• CS: city center requires higher density of carsharing stations, lower density in 

outskirts—what if we have various classes of guards with different values of 
k?

48



christiane.schmidt@liu.se 
https://www.itn.liu.se/~chrsc91/

Thank you.
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