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- Find: m routes, such that all points in P are visible from at least one point on one of the routes—usual objectives: min-max or min-

sum of the m routes
We are guaranteed to see everything, but what happens if:
- Some watchman might fail during the movement?
- Small obstacles may appear in the polygon?
- Vision from one direction is hampered?
➡ We want to make our routes robust against

some of these aspects!
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Both W1 and W2 are watchman routes
➜ At least one point on each route sees p
Consider two maximal wedges defined by angles from which p views Wi— Fi

Each of F1 and F2 covers either 360° or less than 180° (p within RCH and routes relatively convex):
•  One (F2) covers 360°: let w1 ∈W1  be a point that sees p
➡ Ray from w1 in direction of p intersects W2 at point w2 that sees p

*For any two points inside the region enclosed by the route, their shortest path is also 
contained within the enclosed region
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1. Every convex vertex is visited by one of W1 or W2. 
2. Both W1 and W2 visit the visibility polygon of each convex vertex. 
3. Both W1 and W2 are simple and relatively convex*.

Proof ctd: (1)-(3) ⇒ W1 and W2 are segment watchman routes 
Consider p∈P
Both W1 and W2 are watchman routes
➜ At least one point on each route sees p
Consider two maximal wedges defined by angles from which p views Wi— Fi

Each of F1 and F2 covers either 360° or less than 180° (p within RCH and routes relatively convex):
•  One (F2) covers 360°: let w1 ∈W1  be a point that sees p
➡ Ray from w1 in direction of p intersects W2 at point w2 that sees p
➡ p is segment guarded by w1w2

*For any two points inside the region enclosed by the route, their shortest path is also 
contained within the enclosed region
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3. Both W1 and W2 are simple and relatively convex*.

Claim: F3 or F4 cannot cover more than 180°. W.l.o.g. assume F3 covers more than 180°.

Line l through p in F3  that does not contain edge of P, and F1, F2 on right side of l 
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F3 (and maybe F4): maximal wedge(s), such that for each ray in F3 (F4), there 
is no point w1 ∈W1 and w2 ∈W2 in that direction that p sees

Two routes W1 and W2 are segment watchman routes for P if the following conditions hold: 
1. Every convex vertex is visited by one of W1 or W2. 
2. Both W1 and W2 visit the visibility polygon of each convex vertex. 
3. Both W1 and W2 are simple and relatively convex*.

Claim: F3 or F4 cannot cover more than 180°. W.l.o.g. assume F3 covers more than 180°.

Line l through p in F3  that does not contain edge of P, and F1, F2 on right side of l 
ab max line segment on l  in P

*For any two points inside the region enclosed by the route, their shortest path is also 
contained within the enclosed region
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is no point w1 ∈W1 and w2 ∈W2 in that direction that p sees

Two routes W1 and W2 are segment watchman routes for P if the following conditions hold: 
1. Every convex vertex is visited by one of W1 or W2. 
2. Both W1 and W2 visit the visibility polygon of each convex vertex. 
3. Both W1 and W2 are simple and relatively convex*.

Claim: F3 or F4 cannot cover more than 180°. W.l.o.g. assume F3 covers more than 180°.

Line l through p in F3  that does not contain edge of P, and F1, F2 on right side of l 
ab max line segment on l  in P
ab splits P in at least two subpolygons, at least one left of ab (P’)

*For any two points inside the region enclosed by the route, their shortest path is also 
contained within the enclosed region
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Proof ctd: (1)-(3) ⇒ W1 and W2 are segment watchman routes  
•Neither F1 nor F2 covers 360° 

F3 (and maybe F4): maximal wedge(s), such that for each ray in F3 (F4), there 
is no point w1 ∈W1 and w2 ∈W2 in that direction that p sees

Two routes W1 and W2 are segment watchman routes for P if the following conditions hold: 
1. Every convex vertex is visited by one of W1 or W2. 
2. Both W1 and W2 visit the visibility polygon of each convex vertex. 
3. Both W1 and W2 are simple and relatively convex*.

Claim: F3 or F4 cannot cover more than 180°. W.l.o.g. assume F3 covers more than 180°.

Line l through p in F3  that does not contain edge of P, and F1, F2 on right side of l 
ab max line segment on l  in P
ab splits P in at least two subpolygons, at least one left of ab (P’)
P’ must contain a convex vertex v, but no points of W1 and W2 in P’ ↯

*For any two points inside the region enclosed by the route, their shortest path is also 
contained within the enclosed region
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Two routes W1 and W2 are segment watchman routes for P if the following conditions hold: 
1. Every convex vertex is visited by one of W1 or W2. 
2. Both W1 and W2 visit the visibility polygon of each convex vertex. 
3. Both W1 and W2 are simple and relatively convex*.

Condition (3) does not hold Fulfill all conditions
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Two routes W1 and W2 are segment watchman routes for P if the following conditions hold: 
1. Every convex vertex is visited by one of W1 or W2. 
2. Both W1 and W2 visit the visibility polygon of each convex vertex. 
3. Both W1 and W2 are simple and relatively convex*.

Condition (3) does not hold Fulfill all conditions

Two routes W1 and W2 are optimal segment watchman routes for P if and only if  conditions of the lemma hold.
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Min-max objective: 
•  NP-hard even for simple polygons 
•  Polynomial-time 2-approximation algorithm 
•  For larger k: (k+1)-approximation algorithm

Min-sum objective: 
•  Polynomial-time 2-approximation algorithm 
•  Polynomial-time algorithm for convex polygons 
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*The relative convex hull (RCH) of Cij and Dij: the minimal set that contains Cij 
and Dij and is closed under taking shortest paths
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and Dij and is closed under taking shortest paths



Click to edit Master title style2-Approximation Algorithm

11

Idea:
Each route:
•  Visits some convex vertices
•  Sees all the other convex vertices
For each pair ij of convex vertices: 
•  Shortest tour that visits all convex vertices between i and j
•  Shortest tour that sees all convex vertices between j and i, starts at j
•  Take RCH* of orange and turquoise (someone needs to visit j)
•  Shortest tour that visits all convex vertices between j and i
•  Shortest tour that sees all convex vertices between i and j, starts at I
•  Take RCH of yellow and green (someone needs to visit i)
•  CP tour that visits all convex vertices

*The relative convex hull (RCH) of Cij and Dij: the minimal set that contains Cij 
and Dij and is closed under taking shortest paths



Click to edit Master title style2-Approximation Algorithm

11

Idea:
Each route:
•  Visits some convex vertices
•  Sees all the other convex vertices
For each pair ij of convex vertices: 
•  Shortest tour that visits all convex vertices between i and j
•  Shortest tour that sees all convex vertices between j and i, starts at j
•  Take RCH* of orange and turquoise (someone needs to visit j)
•  Shortest tour that visits all convex vertices between j and i
•  Shortest tour that sees all convex vertices between i and j, starts at I
•  Take RCH of yellow and green (someone needs to visit i)
•  CP tour that visits all convex vertices
•  DP tour that sees all convex vertices
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Idea:
Each route:
•  Visits some convex vertices
•  Sees all the other convex vertices
For each pair ij of convex vertices: 
•  Shortest tour that visits all convex vertices between i and j
•  Shortest tour that sees all convex vertices between j and i, starts at j
•  Take RCH* of orange and turquoise (someone needs to visit j)
•  Shortest tour that visits all convex vertices between j and i
•  Shortest tour that sees all convex vertices between i and j, starts at I
•  Take RCH of yellow and green (someone needs to visit i)
•  CP tour that visits all convex vertices
•  DP tour that sees all convex vertices
•  Our approximation: (W1, W2) = arg min {max{|Wij|,|Wji|}, max{|CP |,|DP |}}

i≠j

E.g., in case one of the optimal tours visits all convex vertices

*The relative convex hull (RCH) of Cij and Dij: the minimal set that contains Cij 
and Dij and is closed under taking shortest paths
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christiane.schmidt@liu.se 
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