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Reminder: m-watchmen problem
- Given: Polygon P, m watchmen with or without starting points

- Find: m routes, such that all points in P are visible from at least one point on one of the routes—usual objectives: min-max or min-
sum of the m routes

We are guaranteed to see everything, but what happens if: W1 W5
- Some watchman might fail during the movement?
- Small obstacles may appear in the polygon?  ~_  /

- Vision from one direction is hampered?

= We want to make our routes robust against

some of these aspects! (

Seen by both 1/, and W, W, — m=2

-+ from opposite directions
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A point p is segment-guarded by two points w; and w: in the polygon, if:

* p lies on the segment w;w-

* p is visible from w; and w- (w;w- fully contained in P)
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Two routes W; and W- are segment watchman routes if for every point p in the polygon, there exists w; e W;and
w2 € Wa, such that p is segment-guarded by w; and w-.

We do not require the watchmen to be at w; and w- at the same time!

Objectives? Still min-max or min-sum
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A point p is segment-guarded by two points w; and w: in the polygon, if:

* p lies on the segment w;w-

* p is visible from w; and w- (w;w- fully contained in P)

Two routes W; and W- are segment watchman routes if for every point in the polygon, there exists w; e W;and w» e Wo,
such that p is segment-guarded by w; and w..

Can be generalized to:

* Triangle-guarded points

* k-gon-guarded points
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*For any two points inside the region enclosed by the route, their shortest path is also
contained within the enclosed region

Sufficient Conditions: The “Conditions Lemma”

Two routes W; and W. are segment watchman routes for P if the following conditions hold:
1. Every convex vertex is visited by one of W; or W.

2. Both W; and W visit the visibility polygon of each convex vertex.

3. Both W; and W. are simple and relatively convex*.
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*For any two points inside the region enclosed by the route, their shortest path is also
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*For any two points inside the region enclosed by the route, their shortest path is also
contained within the enclosed region

Sufficient Conditions: The “Conditions Lemma”

Two routes W; and W. are segment watchman routes for P if the following conditions hold:
1. Every convex vertex is visited by one of W; or W.

2. Both W; and W visit the visibility polygon of each convex vertex.

3. Both W; and W. are simple and relatively convex*.

Proof ctd: (1)-(3) = W: and W. are segment watchman routes
e Neither F; nor F- covers 360°

LINKOPING 7
II‘“ UNIVERSITY



*For any two points inside the region enclosed by the route, their shortest path is also
contained within the enclosed region

Sufficient Conditions: The “Conditions Lemma”

Two routes W; and W. are segment watchman routes for P if the following conditions hold:
1. Every convex vertex is visited by one of W; or W.

2. Both W; and W visit the visibility polygon of each convex vertex.

3. Both W; and W. are simple and relatively convex*.

Proof ctd: (1)-(3) = W: and W. are segment watchman routes
e Neither F; nor F- covers 360°

F; (and maybe F,): maximal wedge(s), such that for each ray in F; (F4) there
1s no point w; eW;and w- € W- in that direction that p sees
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*For any two points inside the region enclosed by the route, their shortest path is also
contained within the enclosed region

Sufficient Conditions: The “Conditions Lemma”

Two routes W; and W. are segment watchman routes for P if the following conditions hold:

1
l /
1. Every convex vertex is visited by one of W; or Wo. g /
a .
2. Both W; and W visit the visibility polygon of each convex vertex. / N 7
3. Both W; and W. are simple and relatively convex*. // F ///
/ //
// F
Proot ctd: (1)-(3) = W: and W are segment watchman routes \fli \\\\\ !
. U e
* Neither F; nor F- covers 360° e

F; (and maybe F,): maximal wedge(s), such that for each ray in F; (F,), there
1s no point w; eW;and w- € W- in that direction that p sees

Claim: F;or F, cannot cover more than 180°. W.l.o.g. assume F; covers more than 180°. 1
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*For any two points inside the region enclosed by the route, their shortest path is also
contained within the enclosed region

Sufficient Conditions: The “Conditions Lemma”

Two routes W; and W. are segment watchman routes for P if the following conditions hold:
1. Every convex vertex is visited by one of W; or Wo.

2. Both W; and W. visit the visibility polygon of each convex vertex.

3. Both W; and W. are simple and relatively convex*.

Proof ctd: (1)-(3) = W: and W. are segment watchman routes
e Neither F; nor F- covers 360°

F; (and maybe F,): maximal wedge(s), such that for each ray in F; (F,), there
1s no point w; eW;and w- € W- in that direction that p sees

Claim: F;or F, cannot cover more than 180°. W.l.o.g. assume F5 covers more than 180°. ‘

Line / through p in F5 that does not contain edge of P, and F;, F> on right side of
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*For any two points inside the region enclosed by the route, their shortest path is also
contained within the enclosed region

Sufficient Conditions: The “Conditions Lemma”

Two routes W; and W. are segment watchman routes for P if the following conditions hold:
1. Every convex vertex is visited by one of W; or Wo.

2. Both W; and W. visit the visibility polygon of each convex vertex.

3. Both W; and W. are simple and relatively convex*.

Proof ctd: (1)-(3) = W: and W. are segment watchman routes
e Neither F; nor F- covers 360°

F; (and maybe F,): maximal wedge(s), such that for each ray in F; (F,), there
1s no point w; eW;and w- € W- in that direction that p sees

Claim: F;or F, cannot cover more than 180°. W.l.o.g. assume F5 covers more than 180°. ‘

Line / through p in F; that does not contain edge of P, and F;, F- on right side of
max line segment on / in P
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*For any two points inside the region enclosed by the route, their shortest path is also
contained within the enclosed region

Sufficient Conditions: The “Conditions Lemma”

Two routes W; and W. are segment watchman routes for P if the following conditions hold:
1. Every convex vertex is visited by one of W; or W.

2. Both W; and W visit the visibility polygon of each convex vertex.

3. Both W; and W. are simple and relatively convex*.

Proof ctd: (1)-(3) = W: and W. are segment watchman routes
e Neither F; nor F- covers 360°

F; (and maybe F,): maximal wedge(s), such that for each ray in F; (F,), there
1s no point w; eW;and w- € W- in that direction that p sees

Claim: F;or F, cannot cover more than 180°. W.l.o.g. assume F5 covers more than 180°. ‘

Line / through p in F; that does not contain edge of P, and F;, F- on right side of
max line segment on / in P

splits P in at least two subpolygons, at least one left of <) (P’)
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*For any two points inside the region enclosed by the route, their shortest path is also
contained within the enclosed region

Sufficient Conditions: The “Conditions Lemma”

Two routes W; and W. are segment watchman routes for P if the following conditions hold:
1. Every convex vertex is visited by one of W; or W.

2. Both W; and W visit the visibility polygon of each convex vertex.

3. Both W; and W. are simple and relatively convex*.

Proof ctd: (1)-(3) = W: and W. are segment watchman routes
e Neither F; nor F- covers 360°

F; (and maybe F,): maximal wedge(s), such that for each ray in F; (F,), there
1s no point w; eW;and w- € W- in that direction that p sees

Claim: F;or F, cannot cover more than 180°. W.l.o.g. assume F5 covers more than 180°. ‘

Line / through p in F; that does not contain edge of P, and F;, F- on right side of
max line segment on / in P

splits P in at least two subpolygons, at least one left of <) (P’)
P’ must contain a convex vertex v, but no points of W; and W.in P’ 4
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Sufficient Conditions: The “Conditions Lemma”

Two routes W; and W. are segment watchman routes for P if the following conditions hold:
1. Every convex vertex is visited by one of W; or W.

2. Both W; and W visit the visibility polygon of each convex vertex.

3. Both W; and W. are simple and relatively convex*.

Condition (3) does not hold Fulfill all conditions
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2. Both W; and W visit the visibility polygon of each convex vertex.

3. Both W; and W. are simple and relatively convex*.
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Sufficient Conditions: The “Conditions Lemma”

Two routes W; and W. are segment watchman routes for P if the following conditions hold:

1. Every convex vertex is visited by one of W; or Wo.

2. Both W; and W. visit the visibility polygon of each convex vertex.

3. Both W; and W. are simple and relatively convex*.

Two routes W; and W. are optimal segment watchman routes for P if and only if conditions of the lemma hold.

Condition (3) does not hold Fulfill all conditions
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Our Results

Min-max objective:
» NP-hard even for simple polygons
* Polynomial-time 2-approximation algorithm

 For larger k: (k+1)-approximation algorithm

Min-sum objective:
» Polynomial-time 2-approximation algorithm

» Polynomial-time algorithm for convex polygons

LINKOPING
UNIVERSITY

10



Our Results

Min-max objective:

» NP-hard even for simple polygons

* Polynomial-time 2-approximation algorithm
 For larger k: (k+1)-approximation algorithm

Min-sum objective:
» Polynomial-time 2-approximation algorithm

» Polynomial-time algorithm for convex polygons

LINKOPING
UNIVERSITY

10



2-Approximation Algorithm

LINKOPING
UNIVERSITY

11



2-Approximation Algorithm

Idea:

LINKOPING
UNIVERSITY

11



2-Approximation Algorithm

Idea:
Each route:
e Visits some convex vertices

e Sees all the other convex vertices
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2-Approximation Algorithm

Idea:
Each route:
* Visits some convex vertices
» Sees all the other convex vertices

For of convex vertices:
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2-Approximation Algorithm

Idea:
Each route:

* Visits some convex vertices

» Sees all the other convex vertices
For of convex vertices:

* Shortest tour that visits all convex vertices between 1 and j
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2-Approximation Algorithm

Idea:
Each route:

* Visits some convex vertices

* Sees all the other convex vertices

For of convex vertices:

» Shortest tour that visits all convex vertices between 1 and j

* Shortest tour that sees all convex vertices between j and 1, starts at j
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*The relative convex hull (RCH) of Cj and Dj;: the minimal set that contains Cj;
and Dj and is closed under taking shortest paths

2-Approximation Algorithm j
Idea: Wij

Each route:

* Visits some convex vertices

* Sees all the other convex vertices

For each pair 1) of convex vertices:

» Shortest tour that visits all convex vertices between 1 and j

* Shortest tour that sees all convex vertices between j and 1, starts at j

» Take RCH* of orange and turquoise (someone needs to visit j)
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*The relative convex hull (RCH) of Cj and Dj: the minimal set that contains Cj
and Dj and is closed under taking shortest paths

2-Approximation Algorithm

Idea:
Each route:

* Visits some convex vertices CJ 7

* Sees all the other convex vertices /
For of convex vertices:

» Shortest tour that visits all convex vertices between 1 and j

* Shortest tour that sees all convex vertices between j and 1, starts at j

» Take RCH* of orange and turquoise (someone needs to visit j)

 Shortest tour that visits all convex vertices between j and 1
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*The relative convex hull (RCH) of Cj and Dj;: the minimal set that contains Cj;
and Dj and is closed under taking shortest paths

2-Approximation Algorithm

Idea: D 77
Each route:

* Visits some convex vertices Cj ]
* Sees all the other convex vertices / -
For of convex vertices: iy

» Shortest tour that visits all convex vertices between 1 and j

* Shortest tour that sees all convex vertices between j and 1, starts at j
» Take RCH* of orange and turquoise (someone needs to visit j)
 Shortest tour that visits all convex vertices between j and 1

» Shortest tour that sees all convex vertices between i and j, starts at I
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*The relative convex hull (RCH) of Cj and Dj;: the minimal set that contains Cj;
and Dj and is closed under taking shortest paths

2-Approximation Algorithm

Idea:
Each route:

* Visits some convex vertices
* Sees all the other convex vertices /
For of convex vertices:

» Shortest tour that visits all convex vertices between 1 and j

* Shortest tour that sees all convex vertices between j and 1, starts at j

» Take RCH* of orange and turquoise (someone needs to visit j)

 Shortest tour that visits all convex vertices between j and 1
» Shortest tour that sees all convex vertices between i and j, starts at I W N
» Take RCH of yellow and green (someone needs to visit 1) Jt /
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*The relative convex hull (RCH) of Cj and Dj;: the minimal set that contains Cj;
and Dj and is closed under taking shortest paths

2-Approximation Algorithm

Idea:
Each route:

* Visits some convex vertices
* Sees all the other convex vertices /
For of convex vertices:

» Shortest tour that visits all convex vertices between 1 and j

* Shortest tour that sees all convex vertices between j and 1, starts at j

» Take RCH* of orange and turquoise (someone needs to visit j)

 Shortest tour that visits all convex vertices between j and 1
» Shortest tour that sees all convex vertices between i and j, starts at I W N
» Take RCH of yellow and green (someone needs to visit 1) Jt /

e Cptour that visits all convex vertices
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*The relative convex hull (RCH) of Cj and Dj;: the minimal set that contains Cj;
and Dj and is closed under taking shortest paths

2-Approximation Algorithm

Idea:
Each route:

* Visits some convex vertices

* Sees all the other convex vertices

For each pair 1) of convex vertices:

» Shortest tour that visits all convex vertices between 1 and j

* Shortest tour that sees all convex vertices between j and 1, starts at j
» Take RCH* of orange and turquoise (someone needs to visit j)
 Shortest tour that visits all convex vertices between j and 1

» Shortest tour that sees all convex vertices between i and j, starts at I
* Take RCH of yellow and green (someone needs to visit 1)

 Cptour that visits all convex vertices

 Dptour that sees all convex vertices
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*The relative convex hull (RCH) of Cj and Dj;: the minimal set that contains Cj;
and Dj and is closed under taking shortest paths

2-Approximation Algorithm

Idea:
Each route:

* Visits some convex vertices
* Sees all the other convex vertices /
For of convex vertices:

» Shortest tour that visits all convex vertices between 1 and j

* Shortest tour that sees all convex vertices between j and 1, starts at j

» Take RCH* of orange and turquoise (someone needs to visit j)

 Shortest tour that visits all convex vertices between j and 1
» Shortest tour that sees all convex vertices between i and j, starts at I W N
» Take RCH of yellow and green (someone needs to visit 1) Jt /
» Cp tour that visits all convex vertices
* Dp tour that sees all convex vertices
 Our approximation: (Wi, W>) = arg min {max{| Wi|,| Wii|}, max{|Cr|,|Dr|}}
1#] \ y
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Outlook
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Outlook

* Is the min-sum version NP-hard?
 Triangle-guarded points if the triangle must also be fully in P?
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