III Data Structures

Introduction

Sets are as fundamental to computer science as they are to mathematics. Whereas
mathematical sets are unchanging, the sets manipulated by algorithms can grow,
shrink, or otherwise change over time. We call such sets dynamic. The next five
chapters present some basic techniques for representing finite dynamic sets and
manipulating them on a computer.

Algorithms may require several different types of operations to be performed on
sets. For example, many algorithms need only the ability to insert elements into,
delete elements from, and test membership in a set. A dynamic set that supports
these operations is called a dictionary. Other algorithms require more complicated
operations. For example, min-priority queues, which were introduced in Chap-
ter 6 in the context of the heap data structure, support the operations of inserting
an element into and extracting the smallest element from a set. The best way to
implement a dynamic set depends upon the operations that must be supported.

Elements of a dynamic set

In a typical implementation of a dynamic set, each element is represented by an
object whose fields can be examined and manipulated if we have a pointer to the
object. (Section 10.3 discusses the implementation of objects and pointers in pro-
gramming environments that do not contain them as basic data types.) Some kinds
of dynamic sets assume that one of the object’s fields is an identifying key field.
If the keys are all different, we can think of the dynamic set as being a set of key
values. The object may contain safellite data, which are carried around in other
object fields but are otherwise unused by the set implementation. It may also have

198

Part Il Data Structures

fields that are manipulated by the set operations; these fields may contain data or
pointers to other objects in the set.

Some dynamic sets presuppose that the keys are drawn from a totally ordered set,
such as the real numbers, or the set of all words under the usual alphabetic ordering.
(A totally ordered set satisfies the trichotomy property, defined on page 49.) A total
ordering allows us to define the minimum element of the set, for example, or speak
of the next element larger than a given element in a set.

Operations on dynamic sets

Operations on a dynamic set can be grouped into two categories: queries, which
simply return information about the set, and modifying operations, which change
the set. Here is a list of typical operations. Any specific application will usually
require only a few of these to be implemented.

SEARCH(S, k)
A query that, given a set § and a key value k, returns a pointer x to an element
in § such that key[x] = &, or NIL if no such element belongs to S.

INSERT(S, x)
A modifying operation that augments the set S with the element pointed to by x.
We usually assume that any fields in element x needed by the set implementa-
tion have already been initialized.

DELETE(S, x)
A modifying operation that, given a pointer x to an element in the set S, re-
moves x from S. (Note that this operation uses a pointer to an element x, not a
key value.)

MINIMUM(S)
A query on a totally ordered set S that returns a pointer to the element of S with
the smallest key.

MAXIMUM(S)
A query on a totally ordered set S that returns a pointer to the element of S with
the largest key.

SUCCESSOR(S, x)
A query that, given an element x whose key is from a totally ordered set S,
returns a pointer to the next larger element in S, or NIL if x is the maximum
element.

PREDECESSOR (S, x)
A query that, given an element x whose key is from a totally ordered set S,
returns a pointer to the next smaller element in S, or NIL if x is the minimum
element.

Part Il Data Structures 199

The queries SUCCESSOR and PREDECESSOR are often extended to sets with non-
distinct keys. For a set on n keys, the normal presumption is that a call to MINI-
MUM followed by n — 1 calls to SUCCESSOR enumerates the elements in the set in
sorted order.

The time taken to execute a set operation is usually measured in terms of the size
of the set given as one of its arguments. For example, Chapter 13 describes a data
structure that can support any of the operations listed above on a set of size » in
time O (Ign).

Overview of Part I11

Chapters 10-14 describe several data structures that can be used to implement dy-
namic sets; many of these will be used later to construct efficient algorithms for
a variety of problems. Another important data structure—the heap—has already
been introduced in Chapter 6.

Chapter 10 presents the essentials of working with simple data structures such
as stacks, queues, linked lists, and rooted trees. It also shows how objects and
pointers can be implemented in programming environments that do not support
them as primitives. Much of this material should be familiar to anyone who has
taken an introductory programming course.

Chapter 11 introduces hash tables, which support the dictionary operations IN-
SERT, DELETE, and SEARCH. In the worst case, hashing requires © () time to per-
form a SEARCH operation, but the expected time for hash-table operations is O (1).
The analysis of hashing relies on probability, but most of the chapter requires no
background in the subject.

Binary search trees, which are covered in Chapter 12, support all the dynamic-
set operations listed above. In the worst case, each operation takes © (n) time on a
tree with # elements, but on a randomly built binary search tree, the expected time
for each operation is O (Ig n). Binary search trees serve as the basis for many other
data structures.

Red-black trees, a variant of binary search trees, are introduced in Chapter 13.
Unlike ordinary binary search trees, red-black trees are guaranteed to perform well:
operations take O(lgn) time in the worst case. A red-black tree is a balanced
search tree; Chapter 18 presents another kind of balanced search tree, called a B-
tree. Although the mechanics of red-black trees are somewhat intricate, you can
glean most of their properties from the chapter without studying the mechanics in
detail. Nevertheless, walking through the code can be quite instructive.

In Chapter 14, we show how to augment red-black trees to support operations
other than the basic ones listed above. First, we augment them so that we can
dynamically maintain order statistics for a set of keys. Then, we augment them in
a different way to maintain intervals of real numbers.

10

Elementary Data Structures

In this chapter, we examine the representation of dynamic sets by simple data struc-
tures that use pointers. Although many complex data structures can be fashioned
using pointers, we present only the rudimentary ones: stacks, queues, linked lists,
and rooted trees. We also discuss a method by which objects and pointers can be
synthesized from arrays.

10.1 Stacks and queues

Stacks and queues are dynamic sets in which the element removed from the set
by the DELETE operation is prespecified. In a stack, the element deleted from
the set is the one most recently inserted: the stack implements a last-in, first-out,
or LIFO, policy. Similarly, in a queue, the element deleted is always the one that
has been in the set for the longest time: the queue implements a first-in, first-out,
or FIFO, policy. There are several efficient ways to implement stacks and queues
on a computer. In this section we show how to use a simple array to implement
each.

Stacks

The INSERT operation on a stack is often called PUSH, and the DELETE opera-
tion, which does not take an element argument, is often called POP. These names
are allusions to physical stacks, such as the spring-loaded stacks of plates used
in cafeterias. The order in which plates are popped from the stack is the reverse
of the order in which they were pushed onto the stack, since only the top plate is
accessible.

As shown in Figure 10.1, we can implement a stack of at most n elements with
an array S[1..n]. The array has an attribute fop[S] that indexes the most recently
inserted element. The stack consists of elements S[1..zop[S]], where S[1] is the
element at the bottom of the stack and S[rop[S]] is the element at the top.

10.1 Stacks and queues 201

Figure 10.1 An array implementation of a stack S. Stack elements appear only in the lightly shaded
positions. (a) Stack S has 4 elements. The top element is 9. (b) Stack S after the calls PUSH(S, 17)
and PUSH(S, 3). (¢) Stack § after the call POP(S) has returned the element 3, which is the one most
recently pushed. Although element 3 still appears in the array, it is no longer in the stack; the top is
element 17.

When rop[S] = 0, the stack contains no elements and is empty. The stack can
be tested for emptiness by the query operation STACK-EMPTY. If an empty stack
is popped, we say the stack underflows, which is normally an error. If top[S] ex-
ceeds n, the stack overflows. (In our pseudocode implementation, we don’t worry
about stack overflow.)

The stack operations can each be implemented with a few lines of code.

STACK-EMPTY (S)

1 ifrop[S]1=0

2 then return TRUE
3 else return FALSE

PUSH(S, x)
1 top[S] < top[S]+1
2 Sltop[S]] <« x

PoP(S)

1 if STACK-EMPTY(S)

2 then error “underflow”

3 else rop[S] < top[S]—1
4 return S[rop[S] + 1]

Figure 10.1 shows the effects of the modifying operations PUSH and POP. Each of
the three stack operations takes O (1) time.

Queues

We call the INSERT operation on a queue ENQUEUE, and we call the DELETE ‘
operation DEQUEUE; like the stack operation POP, DEQUEUE takes no element

202

Chapter 10 Elementary Data Structures

1 2 3 4 5 6 7 8 9 10 11 12

head[Q] =7 tail[Q] = 12

1 2 3 4 5 6 7 8 9 10 111

‘r b

taillQ1=3 head[Q]=7

9 10 11 12

tail[Q]1=3 head[Q] =8

Figure 10.2 A queue implemented using an array Q[1 .. 12]. Queue elements appear only in the
lightly shaded positions. (a) The queue has 5 elements, in locations Q[7 .. 11]. (b) The configuration
of the queue after the calls ENQUEUE(Q, 17), ENQUEUE(Q, 3), and ENQUEUE(Q, 5). (c) The
configuration of the queue after the call DEQUEUE(Q) returns the key value 15 formerly at the head
of the queue. The new head has key 6.

argument. The FIFO property of a queue causes it to operate like a line of people
in the registrar’s office. The queue has a head and a tail. When an element is
enqueued, it takes its place at the tail of the queue, just as a newly arriving student
takes a place at the end of the line. The element dequeued is always the one at
the head of the queue, like the student at the head of the line who has waited the
longest. (Fortunately, we don’t have to worry about computational elements cutting
into line.)

Figure 10.2 shows one way to implement a queue of at most » — 1 elements us-
ing an array Q[1..n]. The queue has an attribute head[Q] that indexes, or points
to, its head. The attribute fai/[Q] indexes the next location at which a newly ar-
riving element will be inserted into the queue. The elements in the queue are in
locations head[Q], head[Q] +1, ..., tail[Q] — 1, where we “wrap around” in the
sense that location 1 immediately follows location # in a circular order. When
head[Q] = tail[Q], the queue is empty. Initially, we have head[Q] = tail[Q] = 1.
When the queue is empty, an attempt to dequeue an element causes the queue to
underflow. When head[Q] = tail[Q] + 1, the queue is full, and an attempt to
enqueue an element causes the queue to overflow.

10.1 Stacks and queues 203

In our procedures ENQUEUE and DEQUEUE, the error checking for underflow
and overflow has been omitted. (Exercise 10.1-4 asks you to supply code that
checks for these two error conditions.)

ENQUEUE(Q, x)

1 QOltaillQ]] « x

2 if1ail[Q] = length[Q]

3 then rail[Q] « 1

4 else 1ail[Q] « tail[Q] + 1

DEQUEUE(Q)

1 x « Qlhead[Q]]

if head[Q] = length[Q]

3 then head[Q] « 1

4 else head[Q] < head[Q]+ 1
S return x

[\

Figure 10.2 shows the effects of the ENQUEUE and DEQUEUE operations. Each
operation takes O (1) time.

Exercises

10.1-1

Using Figure 10.1 as a model, illustrate the result of each operation in the sequence
PUSH(S, 4), PUSH(S, 1), PUSH(S, 3), POP(S), PUSH(S, 8), and POP(S) on an
initially empty stack S stored in array S[1.. 6].

10.1-2

Explain how to implement two stacks in one array A[l..n] in such a way that
neither stack overflows unless the total number of elements in both stacks together
is n. The PUSH and POP operations should run in O (1) time.

10.1-3

Using Figure 10.2 as a model, illustrate the result of each operation in the
sequence ENQUEUE(Q, 4), ENQUEUE((Q, 1), ENQUEUE(Q, 3), DEQUEUE(Q),
ENQUEUE(Q, 8), and DEQUEUE(Q) on an initially empty queue O stored in array
Ql[1..6].

10.14
Rewrite ENQUEUE and DEQUEUE to detect underflow and overflow of a queue.

204

Chapter 10 Elementary Data Structures

10.1-5

Whereas a stack allows insertion and deletion of elements at only one end, and a
queue allows insertion at one end and deletion at the other end, a deque (double-
ended queue) allows insertion and deletion at both ends. Write four O (1)-time
procedures to insert elements into and delete elements from both ends of a deque
constructed from an array.

10.1-6
Show how to implement a queue using two stacks. Analyze the running time of the
queue operations.

10.1-7
Show how to implement a stack using two queues. Analyze the running time of the
stack operations.

10.2 Linked lists

A linked list is a data structure in which the objects are arranged in a linear order.
Unlike an array, though, in which the linear order is determined by the array in-
dices, the order in a linked list is determined by a pointer in each object. Linked
lists provide a simple, flexible representation for dynamic sets, supporting (though
not necessarily efficiently) all the operations listed on page 198.

As shown in Figure 10.3, each element of a doubly linked list L is an object
with a key field and two other pointer fields: nex: and prev. The object may also
contain other satellite data. Given an element x in the list, next[x] points to its
successor in the linked list, and prev[x] points to its predecessor. If prev[x] = NIL,
the element x has no predecessor and is therefore the first element, or head, of the
list. If next[x] = NIL, the element x has no successor and is therefore the last
element, or fail, of the list. An attribute head[L] points to the first element of the
list. If head[L] = NIL, the list is empty.

A list may have one of several forms. It may be either singly linked or doubly
linked, it may be sorted or not, and it may be circular or not. If a list is singly
linked, we omit the prev pointer in each element. If a list is sorted, the linear order
of the list corresponds to the linear order of keys stored in elements of the list; the
minimum element is the head of the list, and the maximum element is the tail. If
the list is unsorted, the elements can appear in any order. In a circular list, the prev
pointer of the head of the list points to the tail, and the next pointer of the tail of
the list points to the head. The list may thus be viewed as a ring of elements. In the
remainder of this section, we assume that the lists with which we are working are
unsorted and doubly linked.

()

(b)

©

(@)

102 Linked lists 207

Figure 10.4 A circular, doubly linked list with a sentinel. The sentinel ni/[L] appears between the
head and tail. The attribute sead[L] is no longer needed, since we can access the head of the list
by next[nil[L]]. (a) An empty list. (b) The linked list from Figure 10.3(a), with key 9 at the head
and key 1 at the tail. (c) The list after executing LIST-INSERT (L, x), where key[x] = 25. The new
object becomes the head of the list. (d) The list after deleting the object with key 1. The new tail is
the object with key 4.

tail; the field next[nil[L]] points to the head of the list, and prev[nil[L]] points to
the tail. Similarly, both the next field of the tail and the prev field of the head
point to nil[L]. Since next[nil[L]] points to the head, we can eliminate the attribute
head[L] altogether, replacing references to it by references to next[nil[L]]. An
empty list consists of just the sentinel, since both next[nil/[L]] and prev[nil[L]] can
be set to nil[L].

The code for LIST-SEARCH remains the same as before, but with the references
to NIL and head[L] changed as specified above.

LIST-SEARCH' (L, k)

1 x <« next[nil[L]]

2 while x # nil[L] and key[x] # k
3 do x <« next[x]

4 return x

We use the two-line procedure LIST-DELETE' to delete an element from the list.
We use the following procedure to insert an element into the list.

LIST-INSERT' (L, x)
1 next[x] < next[nil[L]]
2 prevlnext[nil[L]]] < x
3 nextlnil[L]] « x
4 previx] < nil[L]

208

Chapter 10 Elementary Data Structures

Figure 10.4 shows the effects of LIST-INSERT’ and LIST-DELETE’ on a sample list.

Sentinels rarely reduce the asymptotic time bounds of data structure operations,
but they can reduce constant factors. The gain from using sentinels within loops
is usually a matter of clarity of code rather than speed; the linked list code, for
example, is simplified by the use of sentinels, but we save only O (1) time in the
LiST-INSERT’ and LIST-DELETE’ procedures. In other situations, however, the
use of sentinels helps to tighten the code in a loop, thus reducing the coefficient of,
say, n or n? in the running time.

Sentinels should not be used indiscriminately. If there are many small lists, the
extra storage used by their sentinels can represent significant wasted memory. In
this book, we use sentinels only when they truly simplify the code.

Exercises

10.2-1
Can the dynamic-set operation INSERT be implemented on a singly linked list
in O (1) time? How about DELETE?

10.2-2
Implement a stack using a singly linked list L. The operations PUSH and PoP
should still take O (1) time.

10.2-3
Implement a queue by a singly linked list L. The operations ENQUEUE and DE-
QUEUE should still take O (1) time.

10.2-4

As written, each loop iteration in the LIST-SEARCH’ procedure requires two tests:
one for x # nil[L] and one for key[x] # k. Show how to eliminate the test for
x # nil[L] in each iteration.

10.2-5
Implement the dictionary operations INSERT, DELETE, and SEARCH using singly
linked, circular lists. What are the running times of your procedures?

10.2-6

The dynamic-set operation UNION takes two disjoint sets Sy and S, as input, and
it returns a set S = S§; U §; consisting of all the elements of S; and S;. The
sets 51 and S, are usually destroyed by the operation. Show how to support UNION
in O (1) time using a suitable list data structure.

