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Distributed Learning
In the context of distributed learning we consider K distributed agents with local
(possibly private) datasets. A global mapping f(x) : Rd → R is trained using
local loss functions fk(x) : Rd → R,∀k = 1, ...,K, parameterized by x ∈ Rd.

We seek the solution to

minimize
x∈Rd

f(x) = minimize
x∈Rd

N∑
k=1

fk(x),

First order method: Distributed gradient decent

x(t+1) =x(t) − γ∇f(x(t)) = x(t) − γg(t)

g(t) =

K∑
k=1

g
(t)
k =

K∑
k=1

∇fk(x
(t))

Necessity of Compression
Four steps in each iteration:
1. PS broadcasts x(t) to agents,

2. Agents compute local gradients g
(t)
k ,

3. Each agent transmits g
(t)
k to PS,

4. PS updates global model using
aggregated g(t).

Communication bottleneck problem
arises when all agents simultaneously
transmites their gradient to PS over
rate-constrained digital links.

Common solutions:
• Reduce number of bits
(Sparsification, quantization)

• Reduce number of particiapating
agents (scheduling)

• Reduce transmission frequency
(adaptive communication)

Emerging method:
Prediction-based approaches

Gradient Prediction
Motivation: Consecutive gradients might be correlated in time

M(t)
k =

{
g̃
(t−1)
k , g̃

(t−2)
k , . . .

} Agent k memory consisting of previous
imperfect gradient estimates, stored by
both agent k and the PS

ĝ
(t)
k =

s∑
i=1

a
(t)
k,ig̃

(t−i)
k Linear predictor of the current gradient

a∗
k
(t) = argmin

a
(t)
k ∈Rs

∥∥∥g(t)
k − ĝ

(t)
k

∥∥∥2 Optimal prediction coefficient from the
least-square (LS) estimate.

e
(t)
k = g

(t)
k − ĝ

(t)
k

Prediction residual

Properties from the LS-estimate:

• Orthogonality ĝ
(t)
k ⊥ e

(t)
k

• Norm reduction:
∥∥∥e(t)k

∥∥∥ ≤
∥∥∥g(t)

k

∥∥∥

Event-triggered Prediction Residual Compression
To further reduce transmitted information, we compressed the residual using
event-triggered transmission

ẽ(t) = C
(
e
(t)
k

)
=

{
0, if

∥∥∥e(t)k

∥∥∥ ≤ e
(t)
th,k,

Q(e
(t)
k ), otherwise,

g̃
(t)
k = ĝ

(t)
k + ẽ

(t)
k

Imperfect gradient estimates

Trade-off: Aggregated gradient accuracy vs. Omitted residual transmissions.

We use the imperfect gradient estimate to update the parameters

x(t+1) = x(t) − γg̃(t) = x(t) − γ

K∑
k=1

g̃
(t)
k

Simulation results
• K = 10 agents
• T = 1000 iterations
• Memory length s

• w8a dataset w. d = 300 parameters

• e
(t)
th,k = c(t)

∥∥∥g(t)
k

∥∥∥, where c(t) = t/(K · T )
• Q(·) is a stochastic quantizer.

• Quantized gradient/residual elements are further compressed by an entropy
encoder (e.g. Huffman coding). Each residual transmission uses R × d bits,
i.e., R = 6 bits on average per residual element.
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Method
Residual trans.
frequency [%] # iters.

# bits
[×105]

Gradient Difference [1] 100 731 135.20
LAQ [2] 9.72 691 12.49

Proposed s = 1 4.75 726 8.60
Proposed s = 2 1.37 733 6.54
Proposed s = 3 1.01 733 8.40
Proposed s = 5 0.94 733 13.00
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Conclusions
We proposed a prediction-based gradient compression with event-triggered
communication for distributed learning. Remarks:

• The current gradient can be actively predicted using previous gradient
information.

• Omitting transmission when prediction is accurate significantly reduce the
amount of transmitted bits.
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Equally constructed at both sides

Communication
channel

Block Diagram for Agent k
(Each agent is processed independently)

• Synchronized memory updates use

imperfect gradient g̃
(t)
k

• Prediction coefficients a∗(t)

transmitted with high bit count, i.e.
negligible distortion.

=⇒ Both agent and PS knows ĝ
(t)
k
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