

Temporal Predictive Coding for Gradient Compression in Distributed Learning

Adrian Edin¹, Zheng Chen¹, Michel Kieffer² and Mikael Johansson³

¹Div. of Communication Systems, Dept. of Electrical Engineering (ISY), Linköping University (LiU), Sweden ²Université Paris-Saclay, CentraleSupelec, CNRS, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France ³School of Electrical Engineering and Computer Science, KTH, Stockholm, Sweden

Conclusions

 10^{5}

 10^{6}

bits

 $[\times 10^5]$

135.20

12.49

8.60

6.54

8.40

13.00

Total transmitted bits

iters.

731

691

726

733

733

733

We proposed a prediction-based gradient compression with event-triggered communication for distributed learning. Remarks:

- · The current gradient can be actively predicted using previous gradient information.
- Omitting transmission when prediction is accurate significantly reduce the amount of transmitted bits.

 $oldsymbol{e}_k^{(t)} = oldsymbol{g}_k^{(t)} - \widehat{oldsymbol{g}}_k^{(t)}$

Prediction residual

Properties from the LS-estimate:

• Orthogonality $\widehat{g}_{k}^{(t)} \perp e_{k}^{(t)}$ • Norm reduction: $\left\| e_{k}^{(t)} \right\| \leq \left\| g_{k}^{(t)} \right\|$

Block Diagram for Agent k (Each agent is processed independently)

- Synchronized memory updates use imperfect gradient $\widetilde{g}_{k}^{(t)}$
- Prediction coefficients $a^{*(t)}$ transmitted with high bit count, *i.e.* negligible distortion.
- Both agent and PS knows $\widehat{g}_{L}^{(t)}$

This work was presented at the 60th Allerton conference on Communication, Control, and Computing, Illinois, USA, 2024.

Link to the paper and more information: https://ostpopcorn.se/allerton24

