Identifiable latent bandits: Combining observational data and exploration for personalized healthcare

Ahmet Zahid Balcıoğlu, Emil Carlsson, Fredrik D. Johansson Computer Science and Engineering Department Chalmers University of Technology, Sweden

Overview

We turn a multi-armed bandit problem into a linear bandit problem by using observational data to learn a latent variable model (LVM) linear in the reward. We show that such a model enables better personalized treatment exploration in healthcare scenarios with multiple alternative treatments.

Main Contributions:

- Prior work has shown that exploiting the latent structure is more sample efficient for exploration compared to Thompson sampling [1]. We propose a learning algorithm for a latent bandit with a continuous vector-valued latent state which is recovered using an identifiable nonlinear LVM.
- We introduce mean-contrastive learning, a generalization of identifiability of time-contrastive learning [2].
- We propose two latent bandit algorithms that exploit the latent variable model in the regret minimization setting.
- We show in synthetic data that our algorithms are more sample-efficient than MAB, both when a perfect model is used and when the model has been learned from observational data.

$$A_{q,2} \qquad A_{q,T}$$

$$Z_q = U$$

$$Z_{q,t} = Z_q + \eta_t \text{ for } \eta_t \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbb{I})$$

$$X_t = g(Z_q) = g(Z_q + \eta_t)$$

$$R = \theta_A^T Z_q + \epsilon_A$$
(1)

Assumptions:

- (a) Each instance q is generated according to the structural equations (1) where each source variable $Z_{q,t}$ is stationary with respect to patient $q \in [Q]$.
- (b) U follows a non-parametric product distribution p_u .

The nonlinear transformation g is smooth and invertible. (C)

Learning an LVM and θ_A using contrastive learning

- We observe patient history $\mathcal{D} = \{(X_t, A_t, R_t)_1^{T_1}, \dots, (X_t, A_t, R_t)_Q^{T_Q}\}$
- Use observational data X_t , and patient indicators q to train the LVM using contrastive learning.

 $\mathbf{d} \in \mathbb{R}^d$.

Algorithm 1: Inference Time Greedy1 and Greedy2 Algorithms

- 1 Inference Time: Infer Z
 - 1: for t = 1, ..., T do
 - Use the LVM to get an estimate of the latent variable $\hat{\mathbf{z}}_{q,t}$,
 - For Greedy1: Update the belief about the true mean $\hat{\mathbf{z}}_q = \hat{\mathbb{E}}[\hat{\mathbf{z}}_{q,t}] \coloneqq \frac{1}{t} \sum_{t'=1}^{t} \mathbf{h}(\mathbf{x}_{t'})$.
 - For Greedy2: Update the belief about the true mean using 4:

$$\hat{\mathbf{z}}_q = \operatorname{arg\,min}_{\mathbf{z}} \sum_{t'=1}^t \left(R_{t'} - \theta_{A_{t'}}^T \mathbf{z} \right)^2 + \|\mathbf{z} - \hat{\mathbb{E}}[\hat{\mathbf{z}}_{q,t}]\|^2. \quad (2)$$

Choose the next action according to $a_t = \arg \max_{a \in \mathcal{A}} \theta_a^T \hat{\mathbf{z}}_q$. 6: end for

Empirical Results Simple and cumulative regret for bandit algorithms with the learned LVM and the true latent model (oracle).

- Using theorem 1, we have guarantees that the hidden layers of our LVM recovers the true latent state Z.
- Estimate θ_A parameters for the reward model using patient history \mathcal{D} and the estimated Z.

References

- Fast Treatment Personalization with Latent Bandits in Fixed-Confidence Pure Exploration
- $\left[1\right]$
 - Kinyanjui, Newton Mwai, Emil Carlsson, and Fredrik D. Johansson Transactions on Machine Learning Research (2023)
 - Unsupervised feature extraction by time-contrastive learning and nonlinear ICA
- [2]
 - Aapo Hyvarinen and Hiroshi Morioka Advances in neural information processing systems, 2016

05 Cumulativ							
0	100	200	Time	300	400		500
		-	L	T_o	MCC_Z	R_R^2	
IVM fitting	L layers in the	2	100	0.89	0.94		
MLP. T_{o} tir	Mean correla-	2	200	0.91	0.93		
tion coeffici	C) for \hat{z} and av-	2	300	0.87	0.93		
erage R^2 fo	r reward	rd estimates.	4	100	0.89	0.84	
	i i civai a		4	200	0.90	0.90	
			4	300	0.94	0.88	

