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Overview

We turn a multi-armed bandit problem into a linear bandit problem by using observational data to learn a latent variable model (LVM) linear in the
reward. We show that such a model enables better personalized treatment exploration in healthcare scenarios with multiple alternative treatments.

Main Contributions:

e Prior work has shown that exploiting the latent structure is more sample efficient for exploration compared to Thompson sampling [1]. We propose a
learning algorithm for a latent bandit with a continuous vector-valued latent state which is recovered using an identifiable nonlinear LVM.

e We introduce mean-contrastive learning, a generalization of identifiability of time-contrastive learning [2].

e \We propose two latent bandit algorithms that exploit the latent variable model in the regret minimization setting.

e \We show in synthetic data that our algorithms are more sample-efficient than MAB, both when a perfect model is used and when the model has been
learned from observational data.

Model Inference and Results

a Latent state Theorem 1: ldentifiability of Structural Equations

(a) We observe data which is generated by independent sources
according to the stuctural equations (1).

NOISY states (b) The dimension of the LVM (h) is equal to the dimension of the

data x.

(c) The patient means M = [z1,...,zg]' € R"*? have rank n;
patients are distinct.

Then, in the limit of infinite data, the outputs of the feature
extractor are equal to patient mean distribution up to an invertible
affine transformation. In other words, with z := h(x; ¢),
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for some constant invertible matrix A € R%*¢ 3 constant vector
d € R%.

Algorithm 1: Inference Time Greedyl and Greedy2 Algorithms

R = HZZq + €4 1 Inference Time: Infer Z
l: fort =1,...,T do
2: Use the LVM to get an estimate of the latent variable z, .,
Assumptions: 3: For Greedyl: Update the belief about the true mean z, = IAE[iq,t] — % Z’é,zl h(x,/).
4. For Greedy?2: Update the belief about the true mean using
: : : . : ' T 2 S A 2
(a) Each instance ¢ is generated according to the structural equa- 2 = argmin, Y5, _, (Ry — 0% 2) " + ||z — Blzg.(]|”. (2)
: : : : : : : : _ T A
tions (1) where each source variable Z,, ; is stationary with re- 2; endcpsrose the next action according to a; = argmax, ¢ 4 0, Zg-

spect to patient ¢ € [Q)].
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(b) U follows a non-parametric product distribution p,, with the learned LVM and the true latent model (oracle).

(c) The nonlinear transformation g is smooth and invertible.
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e We observe patient history D = {(X;, A¢, Re)1%, ..., (X4, Ay, Ri)o® }
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e Use observational data X;, and patient indicators ¢ to train the LVM 150

using contrastive learning. %
o
e Using theorem 1, we have guarantees that the hidden layers of our LVM %
recovers the true latent state 7. =
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