# A characterization of nonexpansive frugal splitting methods

Anton Åkerman, PhD student, Lund University Dept. of Automatic Control Supervisors: Pontus Giselsson (LU) and Sebastian Banert (Bremen)



## Motivation & Research Goals

Proximal splitting methods are a simple class of first-order methods suitable high-dimensional, convex and non-smooth optimization problems. We find a simple parameterization and a condition guaranteeing convergence for a certain class of proximal splitting methods. This completely characterization all methods in this class that are nonexpansive. Joint work with Enis Chenchene and Emanuele Naldi.

## Problem description

## Results

We consider methods for solving the optimization problem

$$\operatorname{minimize}_{x \in \mathbb{R}^d} \sum_{i=1}^F f_i(x) + \sum_{i=1}^B g_i(x), \tag{1}$$

for  $B \ge 2$ ,  $F \in \mathbb{N}$  all functions convex, with each  $f_i$  differentiable with  $\beta_i$ -Lipschitz gradient.

Frugal splitting methods use the following building blocks

- One gradients for each differentiable functions  $f_i$  per iteration
- One evaluation of the proximal operator, defined as  $\operatorname{prox}_{\gamma g}(x) = \operatorname{argmin}_{z} \left( g(z) + \frac{1}{2\gamma} ||z x||^2 \right)$ , for each function  $g_i$  per iteration
- Linear combinations

Why splitting?

- Proximal operator potentially much cheaper to evaluate for the individual function, functions if prox friendly
- Possible to solve problems distributively

Consider an optimization problem on the form  $\min_{x \in C} f(x) = \min_{x \in \mathbb{R}^d} f(x) + \iota_C(x)$ , which can be solved with the proximal gradient method. The iterates of the projected gradient method,  $x_{k+1} = \prod_C (x_k - \gamma \nabla f(x_k))$ , converge to a minimizer.

For a splitting method we want to guarantee the following:

- Fixed-point encoding, i.e. algorithm fixed-points always correspond to solutions of our optimization problem.
- Guaranteed convergence (usually by showing the update is so called averaged nonexpansive)

#### We show that

All frugal splitting methods (that are fixed-point encoding) (1), in which the iterates  $z^k \in \mathbb{R}^{n \times d}$  have minimal dimension n = B - 1, can be parameterized as

$$x_{i}^{k} = \operatorname{prox}_{\gamma_{i}g_{i}} \left( \gamma_{i}L_{i}\boldsymbol{x}^{k} + \gamma_{i}M_{i}\boldsymbol{z}^{k} - \gamma_{i}\sum_{j=1}^{F}N_{ij}\nabla f_{j}(G_{j}\boldsymbol{x}^{k}) \right)$$
$$\boldsymbol{z}^{k+1} = \boldsymbol{z}^{k} - M^{T}\boldsymbol{x}^{k}$$

#### for algorithm points

$$\begin{cases} \boldsymbol{x}^k = (x_1^k, x_2^k, \dots, x_B^k)^T \in \mathbb{R}^{B \times d} \\ \boldsymbol{z}^k \in \mathbb{R}^{(B-1) \times d}. \end{cases}$$

### References

Frugal Splitting Operators: Representation, Minimal Lifting, and Con-

[1] Vergence

[2]

M. Morin, S. Banert, P. Giselsson SIAM Journal on Optimization, 2024

Resolvent splitting for sums of monotone operators with minimal lifting Y. Malitsky, M. Tam

Mathematical Programming, 2023

and for  $\mathbf{0} < \gamma \in \mathbb{R}^B$ ,  $L \in \mathbb{R}^{B \times B}$  strictly lower triangular, with  $G, N^T \in \mathbb{R}^{F \times B}$  and  $M \in \mathbb{R}^{B \times (B-1)}$ . Additionally we require that  $\mathbb{1}^T \gamma = \mathbb{1}^T L \mathbb{1}$ ,  $M^T \mathbb{1} = 0$  and  $N^T \mathbb{1} = G \mathbb{1} = \mathbb{1}$ .

Our convergence result is as follows.

Let  $\beta \in \mathbb{R}^{f}$  be the vector of smoothness constants for the functions  $f_i$ . A method on this form is nonexpansive if and only if

$$2\operatorname{diag}(\gamma)^{-1} - L - L^T - MM^T \succeq \left(K^T - N\right)\operatorname{diag}(\beta)\left(K - N^T\right)$$
(2)

The same results hold also for the more general monotone inclusion problem, with operators either  $\frac{1}{\beta}$ -cocoercive or maximally monotone.

#### In summary:

- We give a simple, complete characterization of all nonexpansive frugal splitting methods with minimal lifting.
- Condition (2) gives standard parameter bounds for some existing splitting methods.
- Enables simple algorithm design. The choice of sparse matrices simplifies parallelization and use for distributed optimization.

