Cut-and-Paste Synthetic Data Generation for
Instance Segmentation

Asma Raeilsli, Gabriel Ellertsen, Jonas Unger
LinkOping University, Norrkoping, Sweden
Email: {asma.raeisi, gabriel.ellertsen, jonas.unger}@liu.se

LINKOPINGS
II." UNIVERSITET

Introduction

Synthetic data is increasingly used for training and evaluating deep neural networks in computer vision tasks due to the difficulty of obtaining
real-world ground truth data [1]. However, it presents challenges, the reality gap, where networks trained on synthetic data may not perform
well on real-world data without additional fine-tuning [2]. This project aims to develop techniques for synthetic data generation, explore its

effects on the reality gap, and investigate how synthesis and augmentation can be integrated as integral parts in a training feedback loop.

Methodology

Synthetic data generation process:

Object Extraction
 Randomly select one to five objects
* Create a binary mask for object shape

» EXxtract objects with masks using bitwise AND
operation

Object Insertion

Two blending methods:

* Objects with sharp edges
* Objects with blurred edges via Gaussian blur

Performance evaluation:
* |nstance segmentation using Mask R-CNN [3]

Conclusion

» Blurred edges didn't improve results

« Larger dataset led to longer training with
minimal gains

* |ntegration of real and synthetic data
Improves generalization on real data

Future work:

Exploring sensor simulation using:
 Computer graphics rendering

« Domain randomization

e Generative models
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— Object Extraction

Results

> Object Insertion

Figures display synthetic Iimages with sharp edge objects, featuring both single and
multiple objects randomly placed on the background.

 Tables 1 and 2 compare Mask

Table 2: Model trained on synthetic data
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