
Model mAP50 mAP75

SingleObjsharp 79.56 72.75

SingleObjblur 79.13 72.41

MultiObjsharp 78.47 71.51

MultiObjblur 78.25 71.52

LargeSet-MultiObjsharp 78.58 71.65

LargeSet-MultiObjblur 78.18 71.57

LargeSet-Real-SingleObjsharp 80.31 73.30
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Synthetic data is increasingly used for training and evaluating deep neural networks in computer vision tasks due to the difficulty of obtaining

real-world ground truth data [1]. However, it presents challenges, the reality gap, where networks trained on synthetic data may not perform

well on real-world data without additional fine-tuning [2]. This project aims to develop techniques for synthetic data generation, explore its

effects on the reality gap, and investigate how synthesis and augmentation can be integrated as integral parts in a training feedback loop.
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Model mAP50 mAP75

Model in [4] 72 61

Aug-Model 78.48 57.52

Baseline 80.10 73.07

Table 1: Model trained on real data

Table 2: Model trained on synthetic data

Conclusion

• Blurred edges didn't improve results

• Larger dataset led to longer training with

minimal gains

• Integration of real and synthetic data

improves generalization on real data

Future work:

Exploring sensor simulation using:

• Computer graphics rendering

• Domain randomization

• Generative models

Synthetic data generation process:

Object Extraction

• Randomly select one to five objects

• Create a binary mask for object shape

• Extract objects with masks using bitwise AND

operation

Object Insertion

Two blending methods:

• Objects with sharp edges

• Objects with blurred edges via Gaussian blur

Performance evaluation:

• Instance segmentation using Mask R-CNN [3]

Figures display synthetic images with sharp edge objects, featuring both single and 

multiple objects randomly placed on the background.

• Tables 1 and 2 compare Mask

R-CNN performance for

instance segmentation across

different scenarios.


