# **Data-Driven model for discovery** of intracellular calcium oscillations behaviour

Matthieu Barreau<sup>\*</sup>, Marco Martens<sup>†</sup>, Kateryna Morozovska<sup>\*</sup>, Özan Oktem, Liviana Palmisano, Aurora Poggi

KTH, Department of Mathematics, Stockholm, Sweden <sup>†</sup> Stony Brook, Department of Mathematics, New York, USA \* KTH, Department of Electrical Engineering, Stockholm, Sweden



## AIM:

Estimate the dimension of the attractor for the flow dynamic, if possible characterize the attractor geometry.

## **Takens Embedding theory**

## Question:

What properties of the system one can reconstruct given a time series evolution?

Time delay embedding is based on a dicrete-time dynamical system  $T: X \to X$  and an observable  $h: X \to \mathbb{R}$ . Consider a time series generated by a point  $x \in X$  as  $y_i = h(T^{j-1}x)$ , so

 $(y_1, y_2, \dots, y_m) = (h(x), h(Tx), \dots, h(T^{m-1}x)).$ 

A time delay embedding with delay-length k embeds the time series into  $\mathbb{R}^k$  via the sliding-window procedure:

 $((y_1, y_2, \dots, y_k), (y_2, \dots, y_{k+1}), \dots, (y_{m-k+1}, \dots, y_m)).$ 

## AIM:

Recover the dynamics of the graph representation for the flow dynamics.

# **Control Theory**

Setup: Given N agents, each agents moves with the same speed but different directions. Assuming the direction depends on the law

 $\theta_i(t+1) = \theta_i(t) + K(\theta_i(t) - \theta_i(t))u_i(t).$ 

#### **Consensus Problem:**

Find  $u_i(t)$  such that for  $t \to \infty$  we have  $\theta_1(t) = \theta_2(t) = \cdots = \theta_N(t)$ , where each agent can only detect relative errors  $x_i - x_i$  for *j* neighbour, i.e.  $j \in N_i$ .

#### Classical Takens theorem:

Let X be a compact manifold. If  $k > 2 \dim(X)$ , then  $\phi_{h,k}$  is injective for typical h, where  $\phi_{h,k}(x) = (h(x), h(Tx), \dots, h(T^{k-1}x))$ .

The minimum acceptable embedding dimension can be obtained looking at the behaviour of near neighbors under changes in the embedding dimension from d to d + 1, via false neighbors [2].

## **Fractal Geometry**

The box counting dimension is defined on a non empty bounded subset *E* of  $\mathbb{R}^n$ , let  $N_r(E)$  be the smallest number of sets of diameter *r* that can cover *E* [1]. Where the diameter of a set U is defined as  $|U| = \sup\{|x - y| : x, y \in U\}$ , that is the greatest distance apart of any pair of points in U. The Box counting dimension of E is

$$dim_B E = \lim_{r \to 0} \frac{\log N_r(E)}{-\log(r)}.$$

Main challenges: data shortages, that we address by taking a chosen time window and selecting pixel grids. Subsequently, we get additional data, which comprises specific sites of the attractor in a high-dimensional space.





Future work: First, to find out the best K, the problem is expressed as a least squares problem on K.

In order to improve the model's fit to the data, we intend to use a function trained by PINN or NeuralODE rather than a constant parameter *K*.

## **Previous approaches**

- SINDy (Sparse identification of non linear dynamics).
- DMD (Dynamic Mode Decomposition).
- Symbolic Regression.
- Markov Chains.

## References

- [1] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, 2004.
- [2] Determining embedding dimension for phase-space reconstruction using a geometrical construction, M.B. Kennel, R. Brown and H.D.I. Abarbanel, Phys. Rev. A 45, 1992

# Funding

This work is supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

