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Introduction

We present a novel method for FP8 neural network training in a federated learning context. This brings not only the usual benefits of
FP8 which are desirable for on-device training at the edge, but also reduces client-server communication costs due to significant weight
compression. Experiments with various machine learning models and datasets show that our method consistently yields communication
reductions across a variety of tasks and models compared to an FP32 baseline.
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FedAvg with Quantization Aware Training (QAT). We con-
sider the federated learning problem [1], where K clients update
their local models by minimizing local objectives Fk(w, Q, α, β) =
E(x,y)∼Dk

[l(w;x, y,Q, α, β)], where Q is a quantization operator and
l is the loss function. Furthermore, α and β are the per-tensor clipping
values used for weights and activations during QAT respectively [2]. The
global objective can be expressed as

min
w

F (w, Q, α, β), F (w, Q, α, β) =

K∑
k=1

nk
n
Fk(w, Q, α, β), (1)

where nk is the number of training samples on the k:th device and
n =

∑
k nk is the total number of training examples.

Quantized communication (CQ). When applying FP8 QAT to a
federated leaning scenario, an important aspect is the ability to reduce
communication overhead by transferring weights between clients and the
server using only 8 bits per scalar value. In order to form an unbiased
estimate of the average client weight, we use stochastic quantization
before transmitting the weights to the server.

Server-side optimization. In the un-quantized version of FedAvg, a
weighted average of the individual client weights is used to form the server
model, since this minimizes the mean squared error (MSE) between client
weights. However, this property no longer holds when the server weights
are also quantized. We therefore propose to explicitly solve the following
MSE minimization problem:

wt+1, αt+1 = argmin
w,α

∑
k∈Pt

nk
mt
‖Qrand(w;α)−Qrand(w

k
t ;α

k
t )‖22. (2)

Since there is no closed form solution, we find an approximation by solving
for wt+1 using gradient descent, then for αt+1 using grid search. A
summary of our complete algorithm is found below.

Algorithm 1 FP8FedAvg-UQ+

Input: w1, α1, β1, Qdet, Qrand
for t = 1, ..., T do

Sample a set Pt ∈ [K] of P active devices
for each client k ∈ Pt do

Receive Qrand(wt;αt), αt, βt from server
{wk

t+1, α
k
t+1, β

k
t+1} ← LocalUpdate(wt, Qdet;αt, βt,Dk)

Send Qrand(w
k
t+1;α

k
t+1), α

k
t+1, β

t+1
i to server

end for
Compute mt =

∑
k∈Pt

nk, βt+1 ←
∑
k∈Pt

nk

mt
βkt+1

{wt+1, αt+1} ← ServerOptimize({αkt+1,w
k
t+1}k∈Pt)

end for
Evaluate on wT+1, αT+1, βT+1

Convergence Analysis

Theorem. For convex and L-smooth federated losses in (1) with
G-bounded unbiased stochastic gradients using an FP8 deterministic
quantization method during training and an FP8 unbiased quantization
method with bounded scales for model communication, the objective gap
E [F (Qrand(wτ ))− F (w∗)] decreases at a rate of
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where τ is uniformly sampled from {1, 2, . . . , T}, T is the number of rounds,
U is the total number of updates done in each round, the quantization
scales are uniformly bounded by S, w1 is the initial model, and w∗ is an
optimal solution of (1). Here, T1 is similar to the SGD convergence rate,
whereas T2 is due to quantized communication and T3 arises from the
quantization during training.

Experimental Results

Our experimental results show two important findings: 1) deterministic
quantization works best during local QAT training and 2) stochastic
quantization is better for communicating the models back and forth to
the server. This agrees with the intuition that an unbiased model average
improves convergence. The table below shows final round test accuracies
on CIFAR100.

FP8 QAT without CQ FP8 det. QAT with CQ

Model det. QAT rand. QAT det. CQ rand. CQ

LeNet 44.4± 0.5 43.7± 0.6 38.0± 0.4 44.8± 0.4
ResNet18 64.5± 0.1 63.5± 0.5 62.5± 0.9 64.0± 0.2

Furthermore, compared to an FP32 baseline, we are able to achieve similar
performance with significant reductions in communication costs, since the
communicated bytes per round is reduced by approximately 4×. Below,
we have highlighted the communication reductions using biased commu-
nication (BC), unbiased communication (UQ) and our proposed method
with server-side optimization (UQ+) for image classification on CIFAR100
using ResNet18 and keyword spotting on Google Speechcommands using
a Transformer based model.
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