Support for critical collaboration tasks through gaze guidance and visual augmentation A. Jena¹, B. Olofsson², J. Malec¹, E. A. Topp¹ Department of Computer Science¹, Department of Automatic Control² Lund University

FACULTY OF ENGINEERING

Motivation

Critical tasks like **search-and-rescue** and **hazardous environment operations** require seamless **human-robot collaboration** to enhance **decision-making** and **efficiency**. Existing systems often suffer from **high cognitive workloads** and **limited adaptability**. Our work addresses these issues through a modular **system** that integrates **gaze detection**, **visual augmentation**, and **input mapping** to **reduce user workload** and **improve task performance**. By seamlessly connecting automation with human intuition, this approach ensures **scalability** and **effectiveness** across diverse, **high-stakes scenarios**.

Results: System Validation and User Study

Fig 1: System Architecture

1. System Architecture

Modular design with the following components:

- Gaze Detection: Tracks user head gaze direction
- Input Mapping: Maps gaze to commands using dualconfirmation
- Robot Command Generation: Translates inputs into real-time commands
- Visual Feedback: Displays real-time robot camera views
- Augmentation Module: Highlights areas of interest (AOIs)

2. Validation

Tested in a search-and-rescue scenario comparing:

- System-Assisted (SA): Augmented AOIs for user guidance.
- Human-Assisted (HA): Manual navigation with keyboard inputs.

3. Key Takeaways

- Faster and efficient visual search due to guided focus in high stake scenarios
- Gaze stability and reduced exploratory behaviour in SA

Fig 2: Difference in user behavior for SA and HA scenarios.

Measure	Value
Latency	10ms
Data Transmission Rate	60Hz

Table 1: Core components achieved low latency and high data transmission rates, ensuring smooth operation in dynamic environments.

Measure	System-Assisted (SA)	Human-Assisted (HA)
Task Completion Time	274.41s	678.88s
Cognitive Load (NASA TLX)	33.4	53.85
System Usability Scale	80.13	58.61

- Higher precision in attention guidance in SA
- Reduced Cognitive Load for users
- Extrafoveal attention capture around key AOIs
- Combining human intuition with automation ensures
 improved decision making and system usability

References

[1] Jena, A. and Topp, E.A., 2023, March. Chaos to Control: Human Assisted Scene Inspection. In *Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction* (pp. 491-494).

[2] Jena, A. and Topp, E.A., 2024, February. Towards Understanding the Role of Humans in Collaborative Tasks. In 7th International Workshop on Virtual, Augmented, and Mixed-Reality for Human-Robot Interactions.

Table 2: Comparing the System-Assisted (SA) and Human-Assisted (HA) approaches demonstrates that SA significantly enhances human performance by reducing cognitive load and improving task efficiency.

Contact

WALLENBERG AI, Autonomous syste

Ayesha Jena Elin Anna Topp Jacek Malec Björn Olofsson ayesha.jena@cs.lth.se elin_a.topp@cs.lth.se jacek.malec@cs.lth.se bjorn.olofsson@control.lth.se

