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Motivation & Research Goals

Persistent homology (PH) gives computers a sense of geometry. It is one of the cornerstones of Topological Data Analysis (TDA).
If we want to compare different geometric datasets, we can use PH-derived functional invariants such as stable rank [2, 3, 4].
Traditionally, a lot of effort has been spent on making computations fast for a single invariant. Our aim is to leverage modern
heterogeneous compute environments to accelerate TDA computations for massive datasets and experiments. In addition to
providing the TDA community with new computational tools, we hope to gain insight for developing new mathematics.

Denoising through homology

Let f, g be Y-valued measurements of X :

X
f

⇒
g
Y, such that d(f(X), g(X)) ≤ ε for all X ∈ X , some ε > 0.

Homology-based pipeline:

Distance Spaces −→ Time Series of
Vector Spaces

−→
Lebesgue-
Measurable Functions
[0,∞) → [0,∞)

Y −→ H•(VRt(Y );F) −→ r̂ank[Y ](t)

Theorem: (Chachólski, Riihimäki, 2020)

Let Y be a pseudometric space with distance d. Let Y1, Y2 ∈ Y,
and p ≥ 1. Then,

Lp(r̂ank[Y1], r̂ank[Y1]) ≤ cd(Y1, Y2)
1/p

where c = max{r̂ank[Y1](0), r̂ank[Y2](0)}.

Geometric exploration

Explore geometry by subsampling from distributions within dataset or ref-
erence object [5]:

• How to sample efficiently when dataset is large?

– Incremental lookup in kD tree (other metric trees?)
– Fast pseudorandom number generation [6]
– Sub-ms sampling latency for 30x25 points from 338k R4 point

dataset

• To be developed: distributed r̂ank computations from data

• Idea: run lots of experiments (datasets, hyperparameters, ...)

• Goal: new math (statistical tests, tools, ...)

Similarity computation

GPU-enabled computations on piecewise constant functions [1].

d(f, g) =

∫ ∞

0

|f(t)− g(t)| dt

D =


0 d(f1, f2) d(f1, f3) · · · d(f1, fn−1)

0 d(f2, f3) · · · d(f1, fn−1)

0
. . .

...
0 d(fn−1, fn)

0



pip install masspcf
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