Scalable Unsupervised Feature Selection with Reconstruction Error
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Abstract

Unsupervised feature selection (UFS) methods are valuable for eliminating redundant features without using class labels, but they
often struggle with large datasets. To overcome this, we present QMR-FS, a scalable, greedy forward filtering approach that selects
linearly independent features while ensuring any excluded features can be reconstructed within a specified tolerance. QMR-FS is
based on QMR matrix decomposition, an extension of QR decomposition, resulting in linear complexity relative to the number of
samples. This facilitates parallelized computation on both CPU and GPU, and our model implementation runs in a matter of seconds
on datasets with up to 1 billion elements, while offering classification and clustering performance comparable to other UFS methods.

Problem: The UFS task is to select a subset of the columns of a
data matrix X e R"*¢, while preserving or improving downstream
task accuracy. We desire a method which scales to large n.

j—1

QMR-FS is a greedy approach

based on linear independence. Xj — E :akxk + 01,
k=1

Iterating over the columns in X from left to right, we drop
columns which can be expressed as a linear combination of
previously seen columns. Specifically, column j is dropped if
there exists coefficients a, and b that fulfills the formula above.

Although this could be done by performing d least-squares fits, it
would be inefficient, with a time complexity of O(nd?>).

Instead, QMR-FS archives time complexity O(nd?) by utilizing the
following lemma, which we prove in our paper.

LEmMMA 2.1. Let X € R™*4 gnd Ryef € R4 satisfy X = UR,,r
and Ry, = U' X, where R,f is in row echelon form (REF), and U €

R™¥4 has full rank and the left-side inverse UT € R¥" Thenx; €
span(xt,...,Xj—1) iff rj € span(ry,...,rj—1) forany j > 1 where
xj € R" isthe jth column inX, andr; € R4 is the jth column in Ryef.

The lemma requires a matrix decomposition X=UR__.where U
has a left-side inverse, and R__.is in row echelon form. The QR
decomposition is a good start, but insufficient since R is only
upper triangular. Here is an example showcasing this limitation.

1 1 2 1 1] [—0.45 0.89 0. 0. 0. [—2.24 —0.45 —0.89 —1.34 —1.79]
1 00 1 2 —0.45 —0.22 0.87 0. 0. 0. 0.89 1.79 0.45 0.22
X=1[1 001 1| Q= [-045 —0.22 —0.29 0.82 0. R=| 0. 0. 0. 0.58  1.44
1 00 00 —0.45 —-0.22 —-0.29 —-0.41 -0.71 0. 0. 0. 0.82  0.82
1 0 0 0 0] |—0.45 —0.22 —0.29 —0.41 0.71 | 0 0. 0. 0. 0.

As R is not in row echelon form, it is not clear that columns 4 and
5 are both linearly independent. Therefore, R must be further
decomposed using Gaussian elimination. This results in the QMR
decomposition: X=QMR . :

1. 0. 0. 0. 0. (22 —045 —-0.89 —1.34 —1.79]
0. 1 0. 0. O 0. 0.89 1.79 0.45 0.22
M=0. 00 1. 0 0 Rs=| 0. 0. 0. 058 144
0. 0. 141 1. O 0. 0. 0. 0. —1.23
6. 0. 0. 0. 1 0. 0. 0. 0. 0.

Gaussian elimination is invertible, meaning that QM has the left
inverse matrix M'QT. Thus, by the lemma, the linearly independent
columns in X are the same as those in R__, which are identified by
the pivot elements. In the example, column 3 can be removed.

Thresholding: In practice, exact linear independence can be too

strict, leading to more features being retained than desired. To
address this, QMR-FS removes features with small reconstruction
errors. During the Gaussian elimination, we can efficiently
compute an upper bound on the reconstruction error without
expensive least-square fitting. See our paper for more details.
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Table 1: QMR-FS runtimes in seconds on four large datasets using
threshold value 0.1, resulting in d__ selected features.

Table 2: Summary of benchmark results using 40% and 60% kept features. The average ranks and standard
deviations for classification and clustering are computed over the 6 datasets. The time complexities are
simplified under the assumption n = d, and * indicates methods which are iterated until convergence.
Relative runtimes are displayed for Isolet, the largest dataset the baseline UFS methods scale to.

NUM. INSTANCES AND DIMS. RUNTIME (S)
OMR-FS SVD EnT. LS SPEC USFSM UDFS NDFS CNAFS FMIUFS
DATASET #* d dfs CPU GPU CLSIF. AVG. RANK (40%) 2.8 +1.8 55+2.8 5.8+2.6 83+0.53.0+22 55+1.8 43+19 50+1.4 3.7+26
US CENSUS (1990) 2 46 M 68 66 4.16 + 0.16 275 +0.11 CLSIF. AVG. RANK (60%) 25+16 50+£18 57+2.1 65+26 58+2.8 4.7+2.8 3.2+1.7 53+3.1 5.2+3.1
N R CLSTR. AVG. RANK (40%)[3.0 +2.2 6.7+2.1 65+2.6 7.0+1.7 3.7+2.1 6.0+2.8 3.3+23 55+1.6 2.8+1.3
GrrtHus MUSAE | 37.7K 4006 3799 285+0.18  13.9+0.4> § o orp ave. RANK (60%)[5.5+2.9 43+2.0 48+2.4 72413 48+25 55+2.6 3.0+£2.7 42+3.4 4.8+23
SNAP PATENTS 2.92M 269 259 26.4+0.25  13.7£0.06 ¥ Trve compLexiTY O(nd?*) O(nd®) O(n*d) O(n*d) O(n*d) O(n*d)* O(n*d)* O(n*d)* O(nd)
KDDCUP (1999) 7.88M 127 111 33.9+0.12 20.2+0.06 J§ RunTIME (ISOLET) 137mMs X310 x1.2 X16  x22764  x11 X 44 X2950  X13635
—— Bascline -@— QMR-FS -%- SVDEnt. M- LS - SPEC -@- USFSM  -4- UDFS NDFS  --M-- CNAFS FMIUFS https://github.com/ciwanceylan/
gmr-feature-selection
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