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Setup
Directed acyclic graphs (DAGs) or bayesian networks are directed simple graphs without cycles. @
e A DAG is used to model a causal system, i.e., a distribution IP of X, ..., X,, that encodes conditional
Independence statements. @ @
¢ Conditional independence (Cl) statements X4 1L Xpg | X¢ in IP can be expressed in the DAG G
through connectivity rules. @
Assumption: The distribution P is Markov to its underlying causal system: a DAG G that encodes
exactly the Cl statements that hold in the distribution. 5 @
5

Challenge: Given observed data from IP, can we recover G7

Markov Equivalence: In [2] we give a Transformational and Structural Charac-
terization of the graphs representing a UEC of DAGs, using

algebraic geometry (e.g., Grobner bases) and combinatorics.

e \We partition the space of DAGs into Markov Equivalence
Classes (MECs) based on their Cl relations.

Problem: Given data from IP, find the MEC of G.
Unconditional Equivalence:
e The MEC partition is a refinement of the UEC partition:

Two DAGs are in the same Unconditional Equivalence
Class (UEC) if they encode the same unconditional inde-
pendence statements (X4 1L Xpg | 0).
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1/2\3 /\, 2\3/,-’ Wal J/ 1:/2_\3 1,&3 A) We simulated a data set (1000 samples) over 3 nodes

using the Gaussian linear model (with randomly generated
weights) X; =e€1, X2 =€, X3 =-0.9247X1 + €3.
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e Each edge reversed in D is Weakly covered. /2\ /4\ > HiStogram of the Markov chain indicates a MAP estimate
. . . 1—>3 5 w(U2|X) = 0.208 (i.e., Uz has the highest frequency).
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