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Setup
Directed acyclic graphs (DAGs) or bayesian networks are directed simple graphs without cycles.

• A DAG is used to model a causal system, i.e., a distribution P of X1, ..., Xn that encodes conditional
independence statements.

• Conditional independence (CI) statements XA ⊥⊥ XB | XC in P can be expressed in the DAG G
through connectivity rules.

Assumption: The distribution P is Markov to its underlying causal system: a DAG G that encodes
exactly the CI statements that hold in the distribution.

Challenge: Given observed data from P, can we recover G?
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MECs and UECs
Markov Equivalence:
• We partition the space of DAGs into Markov Equivalence

Classes (MECs) based on their CI relations.

Problem: Given data from P, find the MEC of G.

Unconditional Equivalence:
• The MEC partition is a refinement of the UEC partition:

Two DAGs are in the same Unconditional Equivalence
Class (UEC) if they encode the same unconditional inde-
pendence statements (XA ⊥⊥ XB | ∅).

DAGs on 3 nodes

The structure of a UEC
Transformational Characterization [1]:
Let D,D′ be DAGs in the same UEC. There
is a sequence of edge insertions, reversals and
deletions that transforms D into D′ such that:

• Each edge inserted or deleted in is partially
weakly covered or implied by transitivity.

• Each edge reversed in D is weakly covered.

• After each operation, the resulting DAG is
in the same UEC as D.

2
31

4
5

2
31

4
5

2
31

4
5

2
31

4
5

2
31

4
5

Structural Characterization:
The unconditional dependence graph U of a DAG D has
the same nodes as D and an edge between v, w if there is
a trek (colliderless path) between them in D.

Example:
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Traversing the space of UECs
In [2] we give a Transformational and Structural Charac-
terization of the graphs representing a UEC of DAGs, using
algebraic geometry (e.g., Gröbner bases) and combinatorics.

List of graphs representing a UEC on 3 nodes:
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Number of UECs on 1,2,3,... nodes: 1,2,8,49,462,6424,...
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Applications
Using the transformational characterization, we imple-
mented an MCMC method for estimating the UEC of G,
GrUES (Gröbner-based Unconditional Equivalence Search).

A) We simulated a data set (1000 samples) over 3 nodes
using the Gaussian linear model (with randomly generated
weights) X1 = ϵ1, X2 = ϵ2, X3 = −0.9247X1 + ϵ3.
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▶ Histogram of the Markov chain indicates a MAP estimate
π(U2|X) = 0.208 (i.e., U2 has the highest frequency).

B) 100 linear Gaussian DAG models on 5 nodes for edge
probability p ∈ {0.1, 0.2, . . . , 0.9} and random edge weights
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• ÛIT is the estimate from independence tests,

• ÛBIC is the BIC-optimal estimate,

• ÛMAP is the MAP (maximum a posteriori) estimate,

• Û[0.1] and Û[0.2] are respectively the 10% and 20% HPD
credible sets, and the estimate is correct when the set
contains the true UEC.


