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Background

This project aims to develop novel machine learning based
frameworks to model complex real-world traffic scenarios
iInvolving heavy-duty vehicles. These models will be utilized for
iInformed decision-making in Autonomous Vehicles and Advanced
Driver Assistance Systems (ADAS) at Volvo.
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Safe & Smart Decision Making:
Merging ML with Physical Models

 Tactical decision making for ACC and lane changes in a highway
scenario simulated in SUMO platform, with Reinforcement
Learning (RL) techniques.

» Mitigate the risks of fully relying on RL methods for safety-critical

decisions, by combining them with physical models and

separating high and low-level decisions making.
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Evaluation Metric
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© Cost-Efficient Decision Making:
= F Optimizing TCOP

We design a realistic reward function based on the Total Cost of
Operation (TCOP) of the truck to guide the RL agent towards
optimal and cost-efficient driving strategy.

TCOP Based Reward Function
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Key Results

» Convergence challenges observed while using the complex
reward function with real money values.

* CRL approach showcase comparable performance as non-CRL
approach, while normalizing reward components improves
performance.

%rg Decision Making with Reasoning:
>~ How to Utilize LLMs ?

In the ongoing work, we Iinvestigate how to make use of natural
language processing and reasoning capabilities of LLMs to solve
complex tactical decision making.
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