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Motivation & Contributions

• General policies are structures that encode action plans of infinite sized collections of classical planning problems Q
• There exist combinatorial and deep learning approaches for learning general policies

• Two main issues:

– Scalability in combinatorial setting
– Expressivity, in both

• We introduce abstractions based on state symmetries (isomorphisms) for reducing the number of states in training

• We introduce a method for evaluating the expressive requirements of classes of classical planning problems

Symmetries & Abstractions

• Planning states are relational structures

• Two states s, s′ are isomorphic s∼iso s
′ iff their relational structures

are isomorphic

→ Isomorphism is a bijective relationship preserving mapping between
objects from s to s′

→ Isomorphic states represent the same problem aspect

• Find isomorphic states through graph isomorphism (GI) on undirected
vertex colored graphs (Figure 1)

• Compute abstraction based on notion of isomorphic states induces ab-
stractions (Figure 2)
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Figure 1: Graph G(s) for a state in a problem from the Gripper domain.
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Figure 2: The abstraction of the state model is exponentially more com-
pact with 6n states instead of 2n states.

• Reduced problems Q̃ contains one representative state from each class
of isomorphic states

• Theorem: a general policy π solves Q iff π solves the reduced prob-
lems Q̃

Expressive Learning Requirements

• GNN + RL for learning general policies (Ståhlberg et al. 2023)

• Nearly perfect general policies obtained in several domains (100%)

Domain Coverage (%) 1-WL # conflicts

Delivery 100% 0
Gripper 100% 0

Logistics 36% 131
Grid 79% 42

• But interesting part is in the failures

– GNN expressivity not enough (Logistics, Grid, Blocks)
– Others: insufficient # network layers, sampling

• 1-WL, GNNs, C2 have equivalent expressivity in distinguishing graphs

(Cai et al. 1992, Grohe 2021)

• Indeed, 1-WL/GNNs can’t distinguish pair of isomorphic states

# Conflicts

Domain #Q #S #S/∼iso 1-WL 2-FWL

Barman 510 115 M 38 M 1,326 0
Blocks3ops 600 146 K 133 K 50 0
Blocks4ops 600 122 K 110 K 54 0
Blocks4ops-clear 120 31 K 3 K 0 0
Blocks4ops-on 150 31 K 8 K 0 0
Childsnack 30 58 K 5 K 0 0
Delivery 540 412 K 62 K 0 0
Ferry 180 8 K 4 K 36 0
Grid 1,799 438 K 370 K 42 0
Gripper 5 1 K 90 0 0
Hiking 720 44 M 5 M 0 0
Logistics 720 69 K 38 K 131 0
Miconic 360 32 K 22 K 0 0
Reward 240 14 K 11 K 0 0
Rovers 514 39 M 34 M 0 0
Satellite 960 14 M 8 M 5,304 0
Spanner 270 9 K 4 K 0 0
Visitall 660 3 M 2 M 0 0

Table 1: # conflicts in distinguishing isomorphic states.

• Central takeaways:

– In some domains, 1-WL (and GNNs) are not expressive enough
– Most importantly, 2-FWL, that has the expressive power of C3

appears to be sufficiently expressive in all domains


