Symmetries and Expressive Requirements for Learning General Policies

Dominik Drexler 1 , Simon Ståhlberg 2 , Blai Bonet 3 , Hector Geffner 2

¹Linköping University, Sweden, ²RWTH Aachen University, Germany, ³Universitat Pompeu Fabra, Spain

Motivation & Contributions

- General policies are structures that encode action plans of infinite sized collections of classical planning problems Q
- There exist combinatorial and deep learning approaches for learning general policies
- Two main issues:
 - Scalability in combinatorial setting
 - Expressivity, in both
- We introduce **abstractions** based on **state symmetries** (isomorphisms) for reducing the number of states in training

• We introduce a method for evaluating the expressive requirements of classes of classical planning problems

Symmetries & Abstractions

- Planning states are **relational structures**
- Two states s,s' are isomorphic $s\sim_{iso}s'$ iff their relational structures are isomorphic
 - \rightarrow Isomorphism is a bijective relationship preserving mapping between objects from s to s'
 - \rightarrow Isomorphic states represent the same problem aspect
- Find isomorphic states through graph isomorphism (GI) on undirected vertex colored graphs (Figure 1)
- Compute abstraction based on notion of isomorphic states induces abstractions (Figure 2)

Expressive Learning Requirements

- GNN + RL for learning general policies (Ståhlberg et al. 2023)
- Nearly **perfect general policies** obtained in several domains (100%)

Domain	Coverage (%)	1-WL # conflicts	
Delivery	100%	0	
Gripper	100%	0	
 Logistics	36%	131	
Grid	79%	42	

- But interesting part is in the **failures**
 - GNN expressivity not enough (Logistics, Grid, Blocks)
 - Others: insufficient # network layers, sampling
- 1-WL, GNNs, C_2 have equivalent expressivity in distinguishing graphs

Figure 1: Graph G(s) for a state in a problem from the Gripper domain.

(Cai et al. 1992, Grohe 2021)

• Indeed, 1-WL/GNNs can't distinguish pair of isomorphic states

				# Conflicts	
Domain	$\#\mathcal{Q}$	$\#\mathcal{S}$	$\# \mathcal{S}/\!\!\sim_{iso}$	1-WL	2-FWL
Barman	510	115 M	38 M	1,326	0
Blocks3ops	600	146 K	133 K	50	0
Blocks4ops	600	122 K	110 K	54	0
Blocks4ops-clear	120	31 K	3 K	0	0
Blocks4ops-on	150	31 K	8 K	0	0
Childsnack	30	58 K	5 K	0	0
Delivery	540	412 K	62 K	0	0
Ferry	180	8 K	4 K	36	0
Grid	1,799	438 K	370 K	42	0
Gripper	5	1 K	90	0	0
Hiking	720	44 M	5 M	0	0
Logistics	720	69 K	38 K	131	0
Miconic	360	32 K	22 K	0	0
Reward	240	14 K	11 K	0	0
Rovers	514	39 M	34 M	0	0
Satellite	960	14 M	8 M	5,304	0
Spanner	270	9 K	4 K	0	0
Visitall	660	3 M	2 M	0	0

Figure 2: The abstraction of the state model is exponentially more compact with 6n states instead of 2^n states.

- Reduced problems \tilde{Q} contains one representative state from each class of isomorphic states
- Theorem: a general policy π solves ${\mathcal Q}$ iff π solves the reduced problems $\tilde{{\mathcal Q}}$

Table 1: # conflicts in distinguishing isomorphic states.

• Central takeaways:

- In some domains, 1-WL (and GNNs) are not expressive enough
- Most importantly, 2-FWL, that has the expressive power of C_3 appears to be sufficiently expressive in all domains

WALLENBERG AI, AUTONOMOUS SYSTEMS AND SOFTWARE PROGRAM

