
Non-Confidential Information and Basic Personal Data

Background: Private Aggregation of Teacher Ensembles
(PATE) can be used to merge locally trained models into a
privacy-preserving central model. The predictions of local models
are aggregated by noisy majority voting

Our results
• Out of the box, PATE does not perform

well on MRI tumor segmentation data.
• Dimensionality reduction can vastly

improve PATE’s performance on high-
dimensional tasks.

• For PCA, we get closed-form expressions
for the optimal compression rate and
mean-squared error.
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Machine learning in the medical domain comes with a number 
of challenges, such as:
• Privacy:  Raw data resides in silos. Only aggregated data 

can be transferred to a central server. But even aggregated 
data such as model updates can be used to reconstruct 
training data.

• Communication efficiency: Deep neural networks need 
substantial network bandwidth for distributed training. This 
can be challenging for hospital data centers.

• Heterogeneity:  In machine learning, examples are often 
assumed to be independent and identically distributed (i.i.d.) 
This is often violated in practice, e.g., due to distributional 
differences between local data sources.

Noisy Gradient Descent

We want to train models on distributed medical data.

Privacy-Aware Ensembles
Many machine learning problems can be formulated in the
framework of differentially private empirical risk minimization
(DP-ERM). Here, we want to minimize an average loss subject
to a privacy constraint.
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model
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ỸEnsemble = Count(Y1, . . . , YK)+N (0, σ2I)

Problem:  Majority voting is only suited for single-dimensional 
classification tasks. How do we deal with high-dimensional
tasks, such as medical image segmentation? Suggestion: 
Dimensionality reduction

Privacy constraint: Differential privacy (DP) guarantees that
similar training datasets lead to similar models, in a probabilistic
sense. It limits the ability of an adversary to identify a dataset by
observing the trained model. This is usually achieved by adding
noise to the gradient:

Problem: Noisy Gradient Descent is very sensitive to the
hyperparameters (noise variance, step size, etc.). Tuning these
parameters manually is inefficient and adds an extra privacy cost
to the algorithm.

Instead, we consider a hyperparameter selection rule based on
optimizing the privacy-utility ratio (PUR) at each iteration:

Our results
• The PUR-optimal hyperparameters lead

to a constant signal-to-noise ratio,
and a constant step size.

• According to PUR, more privacy budget
should be allocated to later iterations.
when the gradient is smallest.

• Empirically, the selection rule performs
well across a wide range of datasets. It
often outperforms the best constant
noise variance known in hindsight.


