
Homogeneous Spaces

For all pairs of points                      there exist 
a transformation              such that 

Examples: Torus       (above), 
n-Sphere      , Euclidean Space      , 

Projective Space 

-Equivariance
A map                       which  commutes 
with all transformations            on      and

Examples: Inverting colors under rotations, 
CNN layers under translations, GNN 
networks under node permutations   

Conclusions

Our framework generalizes established 
equivariant models. Any result proved for 
ansatz (1) yields corresponding results for each 
specialisation.  

Further studying this family of operators might 
give insights into the design of next-generation 
equivariant machine learning models, 
including equivariant transformer models.

The framework is powerful in the sense that it 
uncovers mathematical structures in general 
equivariant operators, such as fibre bundles, 
which yield constraints on e.g. the 
expressivety of equivariant models.

We model neural network layers as operators between feature maps on homogeneous spaces, and study a family of G-equivariant operators on the form

where we require that                   only depends on                             and that                                                  for all             .

Since the integration kernel parametrizes all such maps, we are interested in studying the space of such functions     satisfying the condition above.

Our proposal

(1)

Data is encoded as a function

Examples: Image (                         ), 
molecular data (                         ), graph with 
vector features (         graph )
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Summary
Our frameworks extends current families of equivariant linear neural network layers (G-CNNs, 
steerable CNNs) in order to include also nonlinear layers such as self-attention and message passing.

Background

Properties of space of kernels

The structure of kernels is qualitatively similar to the structure of 
feature maps. In particular, many structures can be described as 
fibre bundles which yield geometric and topological information.

The space depends on the choice of reference function, e.g. 
Legesgue integrable functions       or distributions (generalised 
functions). The standard choice in the literature is the space of 
square-integrable functions      .

Two kernels           such that
 

for all              yield the same integral operator in (1). This 
specialises to a known property of G-CNNs and an unknown 
property of the LieTransformer.

Special Cases

Condition

   has no dependence 
on 

G-CNNs and steerable 
CNNs [Cohen et. al. 2018]

Yields

    takes values in 
identity matrices 
times a scalar

LieTransformer 
[Hutchinson et. al. 2020]

    ranges over all 
distributions

Integral map ranges over 
all equivariant maps

The framework specialises to existing equivariant models if 
one restricts the kernel further:

vector vectormatrix{ {{


