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Introduction1
Exploration in dynamic and uncertain real-world environments is an open problem in robotics and it constitutes a foundational capability of autonomous systems operating in most of the real-
world. While 3D exploration planning has been extensively studied, the environments are assumed static or only reactive collision avoidance is carried out. We propose a novel approach to not 
only avoid dynamic obstacles but also include them in the plan itself, to deliberately exploit the dynamic environment in the agent's favor. The proposed planner, Dynamic Autonomous 
Exploration Planner (DAEP), extends AEP [1]  to explicitly plan with respect to dynamic obstacles. Furthermore, addressing prior errors within AEP in DAEP has resulted in enhanced exploration 
within static environments. To thoroughly evaluate exploration planners in dynamic settings, we propose a new enhanced benchmark suite with several dynamic environments, including large-
scale outdoor environments. DAEP outperforms state-of-the-art planners in dynamic and large-scale environments and is shown to be more effective at both exploration and collision avoidance.
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To estimate the future position of dynamic
obstacles has a predictor component been added.
Here, a Kalman Filter with a constant velocity
model has been employed which contributes with
a future trajectory and bounded covariance [3].

To incorporate time
in the planning process
has a Temporal RRT
been added, where
each node contains
the time-of-arrival for
the agent. This facilitates
temporal planning.

Previously, the static information gain has been
used to estimate how much new information can
aquired from a certain pose. This is no longer
feasible since the environment is dynamic. To
handle this has Dynamic Gain been added to
estimate how much new information can be 
aquired from a certain pose at a certain time.

Also, historical data of dynamc obstacle
positions is utilized to prioritize certain areas
that has historically been occupied but is 
currently free. This data is represented in a 
Dynamic Frequency Map (DFM). 

Putting 2a-2d together, we get the dynamic score
function s(p, t). This function gives a score to each node
in the RRT and is used to guide the agent in the dynamic
environment. Here we incorporate time, the dynamic
gain and the Dynamic Frequency Map to avoid sub-
optimal viewpoints.

We evalute the proposed method in a new benchmark suite which
contains 10 worlds, 6 from [2] that has been improved and 4 from us, 
filled with dynamic obstacles. We show that the propsed method
outperforms state-of-the-art exploration planners in both static an 
dynamic environments. DAEP is also shown to scale well to 
large-scale environments, while exploring more effectively and safe.
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