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Stochastic Optimal Control over Scenario Trees Applications in Autonomous Driving
e Other vehicles in the environment are modelled as Markov systems, e Lane Merging in Dense traffic for a Heavy Vehicle combination.
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Fig. Traffic scenario with interactive maneuvers between Heavy vehicles.

e Realizations of the uncertain environment are enumerated to create a -

scenario tree.
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Fig. Lane merging maneuver for heavy vehicle.
e Negotiating with Human Drivers at Intersections.
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Fig. Approximation of a scenario tree considering one other vehicle with two actions. e ————— |
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e Uncertainty estimates are expressed by propagating transition proba- ~
bilities through the scenario tree. " @ |
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Fig. Intersection scenario with Corresponding Optimal Control Solution.
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e Conditional distribution of state transitions is estimated with computa-
tionally efficient learning-based techniques.
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e Avoids excessively conservative behavior.
e Human-like reasoning can be observed.
e Risk vs Performance can be tune via .

—— Deterministic policy
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Interesting Challenges
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e Feasibility Guarantees with ML Methods.
¢ Tight, and Efficient Chance Constraints
e Guarantees with Tree Approximations.
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e Expected performance of the ego-vehicle is optimized.
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