Generating Non-Stationary
Gaussian Processes on
Curved Domains

Erik Jansson, Chalmers University

The surface is meshed

FEM used to solve PDE

 ${\cal W}$ denotes white noise

 $\gamma{:}\,\mathbb{R}^+ o \mathbb{R}^+$

Sets smoothness of GP

 $\mathcal{L}u(x) = \nabla_{\mathcal{M}} \cdot (\mathcal{D}(x) \nabla_{\mathcal{M}} u(x)) + V(x) u(x)$

Reaction-diffusion operator

 $\mathcal{D}(x){:}\,T_x\mathcal{M}\mapsto T_x\mathcal{M}$

Determines preferred directions

 $V{:}\mathcal{M} o \mathbb{R}$

Determines local correlation length

Color white noise on a surface by

$$\mathcal{Z} = \gamma(\mathcal{L})\mathcal{W}$$

A large variety of fields is obtained

Our contribution

- Sampling algorithm
- Strong error bounds
- Fast code

Remaining work

- Inference problem
- Time-dependence
- Weak error

