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Abstract
We address decentralized convex optimization problems, where every agent has its local objective function and constraint set. Agents compute at different
speeds, and their communication may be delayed and directed. We propose a novel algorithm handling difficult scenarios such as message failures, by employing
local buffers. We guarantee the convergence speed of our algorithm using linear quadratic performance estimation problems. This approach simplifies the
analysis of smooth convex optimization problems, going beyond Lyapunov function analysis and avoiding restrictive assumptions such as strong-convexity.

1. Asynchronous Decentralized Constrained Optimization
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2. Asynchronous Double Averaging and Gradient Projection

DAGP[1] is modified for asynchronous setup since it is the first algorithm addressing local
constraints on directed graphs, with a fixed-step size.

Variables (xu,pu) are transmitted across the network. Due to asynchrony, a node v may
receive none, one, or multiple messages from u. Hence, each node holds a distinct local
buffer Bvu for every neighbor, storing received messages. These messages are utilized at
the start of a computation round to compute the estimates (avu,bvu), then the buffer is
cleared. Estimates are updated as:
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Then, ASY-DAGP updates its variables close to DAGP as:

zv = xv −
∑

u∈Nv
in

wvuavu − µ (∇fv(xv)− gv) xv = PSv (zv)
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]
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∑
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ASY-DAGP concepts: Local buffers, Weighted averaging, Projection,
Constrained gradient tracking, and Modified Distributed null projection.

3. LQ-PEP: A new convergence analysis tool
Performance Estimation Problem (PEP) evaluates the worst-case performance of opti-
mization algorithms after K iterations [5]:

max
f,x∗,{xk}

K−1
k=0

Φ(xK−1, x∗) s.t.


f is a function from a family F ,
x∗ is the minimizer of f,
Algorithm generates x1, . . . , xK−1,
‖x0 − x∗‖ ≤ R.

Linear Quadratic (LQ-)PEP is a relaxation of PEP with a quadratic objective function
and linear constraints. It is achieved by

• Considering the class of linear optimization algorithms.
• Finding an upper bound for the performance measure function Φ.

min
{Ψk}

K−1
k=0

K−1∑
k=0

〈Ψk, SΨk〉 s.t. Ψk+1 − R̄Ψk − PXk+2 =

K−2∑
l=0

R̃k,k+1−lΨl.

LQ-PEP bridges the gap between PEP and Lyapunov-based analyses.

4. Convergence Results by LQ-PEP

1. We establish that ASY-DAGP achieves an ε gap in consensus, optimality and feasibility
in O(1/ε2) iterations, under fairly general asynchrony and delays. We require no restrictive
assumption such as strong convexity.

2. We study an arbitrary delay pattern. We calculate a quantity named delay factor for
any possible delay pattern. We can guarantee convergence only if the delay factor is finite
(and the gossip matrices are scaled accordingly).∑

v

dist2(x̄K , Sv) ≤
∑
ν

‖x̄v
K − x̄K‖22 = O

(
κC0

ζK

)
∑
v

fv(x̄v
K)−

∑
v

fv(x∗) = O

(
C0

µK
+

√
κC0C1

ζK

)

5. Experimental Results
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Our constrained problem: compare to DAGP and its throttled version.
fv(x) = log

(
cosh(aTv x − bv)

)
, Sv = {x ∈ R10 | cTv x ≤ dv}. v = 1, . . . , 20
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Unconstrained Logistic Regression: compare to
APPG[2] and ASY-SPA[3].

Our constrained problem, undirected graphs:
compare to ASY-PG-EXTRA[4].
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