
WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

POSTERIOR SAMPLING OF WORD EMBEDDINGS

Väinö Yrjänäinen∗, Isac Boström†, Johan Jonasson†, Måns Magnusson∗

∗Department of Statistics, Uppsala University, Uppsala, Sweden.
†Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.

ABSTRACT
Quantifying uncertainty in word embeddings is crucial

for reliable inference from textual data, yet existing methods
like bootstrap and mean-field variational inference (MFVI) are
computationally intensive or make limiting assumptions. We
explore alternative approaches, focusing particularly on Gibbs
sampling via Polya-Gamma augmentation as our key contribu-
tion, alongside Laplace approximation and Hamiltonian Monte
Carlo (HMC). Additionally, we address the challenge of non-
identifiability in word embeddings. In simulation studies with
known ground truth, our methods demonstrate superior per-
formance in capturing true uncertainties compared to existing
approaches.

SKIP-GRAM NEGATIVE SAMPLES
We develop uncertainty estimation for probabilistic word

embeddings (Rudolph et al., 2016; Bamler and Mandt, 2017;
Rudolph and Blei, 2017), which are probabilistic formulations
of the skip-gram with negative samples (SGNS) model first pre-
sented by Mikolov et al. (2013).

Let D = (wi)
N
i=1 denote the dataset. For each word

wj ∈ W = {wj}Vj=1 we associate two embedding vectors: A
target vector ρj ∈ RK and a context vector αj ∈ RK . Where K de-
notes the dimensionality of the embedding. We organize these
into matrices, ρ ∈ RV×K and α ∈ RV×K . The complete set of
parameters θ ∈ R2V×K is then defined as θ = [ρ, α]⊤.

The SGNS likelihood nicely factors into terms, where each
term only has a handful of parameters

log p(D | θ) =
N∑
i=1

( ∑
v∈C+

i

log σ(ρTwi
αv)

︸ ︷︷ ︸
positive samples

+
∑

v∈C−
i

log(1− σ(ρTwi
αv))

︸ ︷︷ ︸
negative samples

) (1)

where C+
i is the context window, or the set of positive samples,

for word wi. The negative samples C−
i are drawn randomly

from the empirical distribution.

EMBEDDINGS AND ROTATIONS
The SGNS likelihood, as presented in Equation 1, fully

consists of dot products between the target vectors ρv and the
context vectors αv . Given any invertible linear transformation
A ∈ GL(K), we can apply the following paired transformations
to the embeddings: ρ′w = Aρw and α′

v = A−⊤αv . Under these
transformations the dot product remains invariant, (ρ′w)⊤α′

v =
(ρw)

⊤αv . And thus the likelihood remains unchanged.
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Figure 1: ρ1,1 and ρ1,2 display a donut-like symmetry. D = 2,
N = 20000 (as in all plots where not explicitly stated).
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Figure 2: Fixing K ×K elements eliminates the rotational
symmetries for the posterior distribution of ρ1,1 and ρ1,2 .

To eliminate the symmetries, K × K parameters need to be
fixed. We propose having a reference MAP estimate, from
which K context vectors are selected, and their values are fixed
in the subsequent estimation algorithm. The resulting posterior
is demonstrated in Figure 2.

GIBBS SAMPLER
The distribution of each ρv for any v ∈ W is the same as the
posterior for a logistic regression. Utilizing that, we build a
Gibbs sampler that alternates sampling ρ and α. Moreover, we
use the Polya-Gamma method by Polson et al. (2013) to sample
from the logistic posterior.

1: function Embedding Gibbs sampler(𝑥, 𝑊 , 𝑁 , 𝐷, warmup) 
2: ▷ Initialize 𝜌 and 𝛼
3: for 𝑤 ∈ 𝑊  do
4: 𝜌𝑤 ∼ 𝒩𝐷(0, 1√

𝐷
𝑰)

5: 𝛼𝑤 ∼ 𝒩𝐷(0, 1√
𝐷
𝑰)

6:
7: for 𝑖 ∈ 𝑁  do
8: for 𝑤 ∈ 𝑊  do
9: 𝜌𝑤 ← Polya-Gamma-Logistic (𝛼, 𝑥)
10: for 𝑤 ∈ 𝑊  do
11: 𝛼𝑤 ← Polya-Gamma-Logistic (𝜌, 𝑥)
12: if 𝑖 ≥ warmup then
13: ▷ Yield the sample on each iteration
14: return 𝜌, 𝛼

Since each ρv and αv is conditionally independent given α
and ρ, respectively, the algorithm can be highly parallellized.
Specifically, the for loops on rows 8 and 10 can be completely
parallellized, enabling a theoretical |W | fold speedup.

EXPERIMENTS
To be able to compare embeddings with different rotations, we
define the probability divergence between embeddings θ and θ′

as the root mean squared error between the co-occurence prob-
abilities

dco(θ, θ
′) =

√
1

V 2

∑
v,w∈W

(P (w ∧ v | θ)− P (w ∧ v | θ′))2 (2)

As a first step, we measure the convergence of the methods to
the true values given the simulated data. For each w ∈ W , the
word and context vectors are simulated from

ρw ∼ N (0, ε2I/K),

αw ∼ N (0, ε2I/K),
(3)

where d is the dimensionality of the embedding, and the hy-
perparameter ε = 1. We generate random word pairs (w, v) by
sampling uniformly from the set W . A Bernoulli random vari-
able X is then sampled

w ∼ Uniform(W )

v ∼ Uniform(W )

X ∼ Bernoulli(σ(αT
v ρw))

(4)

N times for a simulated dataset with N observations.
Figure 3 plots convergence of the different estimation

methods in terms of dco to the true parameters. No large differ-
ences across the estimation methods are observed. Specifically,
the Gibbs sampler and HMC yield very similar results.
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Figure 3: Convergence with the different estimation methods.
dco (RMSE) as a metric.

We also study the co-occurence probabilities of specific word
pairs and in particular the 90% credible interval. This is illus-
trated for one word-pair in Figure 4, and the percentage of cov-
erage of all word-pairs are presented in Table 1.
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Figure 4: Example of co-occurence probability with increasing
data size, using different estimation methods. The methods are
presented in the following order: MFVI (orange), HMC (blue),
Gibbs (green), Laplace (brown). The bold lines represent the
mean of the co-occurence probability and the surrounding

faded region is the 90% credible interval. In addition, the black
dashed lines represents the true co-occurence probability.

Table 1: Coverage (%) of the true co-occurence probability of
the 90%-credible interval in the simulated experiment for
different data sizes. Averaged over 10 separate simulation

experiments.
Gibbs 91.1 83.3 88.9 90.0 91.1

Laplace 92.0 90.2 87.8 85.7 86.2

HMC 91.9 88.8 88.1 85.8 86.8

MFVI 86.2 84.0 80.2 78.8 61.1
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Figure 5: Posterior for ρ1,1 and ρ1,2 for the different methods.
Rotations are eliminated by fixing D ×D parameters to a MAP

estimate.

In Figure 5, the posterior for specific parameter values is shown.
The parameter values are now comparable, as the rotations are
eliminated. Mean-field variational inference seems to underes-
timate the uncertainty of the parameters compared to the other
methods, which also seen in Table 1. This is in line with previ-
ous literature on variational inference (Wang and Blei, 2018).
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