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1. Combinatorial volatile Gaussian
process semi-bandit problem (CVGP-MAB)

* Select superarm a; € S; s.t.
|at\ S K.

*Volatile (= contextual):
Available arms vary with time.

* Observe rewards r:(a) Va € a;.
* Goal: Minimize Bayesian regret

BR(T) = ) E[f(a;) — f(a)]

where a; = arg max,cs, f(a) and

f(a) — ZaEa f(a)

3. Application to online energy

efficient navigation

* Find most efficient route from A to
B using minimal energy.

* Random energy cost with
unknown means.

* Minimize total energy used over T
steps.

* Modelled as combinatorial MAB
by Akerblom et al. [3].

ff  We model as CVGP-MAB and
use the features of the road
segments to learn faster.
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4. Experimental results

e Real-world road network data combined with
energy model.
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* Edge features: length, incline and speed limit.
* Bayesian inference (BI) with UCB, BayesUCB

GAUSSIAN PROCESS BANDITS
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— f arg max frs
TTTT O M UCBy = piy + /Bioy
fy £ oy arg max UCBy

== fos ~ GP(us, ki)

Acquisition functions:

GP-UCB e+ /Broi 1 (a)
GP-BayesUCBI1,2] Q(1 — m:, N (1, 07(a)))

GP-TS fila) ~ GP (s, ki)

* GP-UCB and -BayesUCB differ in
parametrization of j3;.

 GP-UCB and GP-TS: First regret bound
for infinite and volatile setting (and
combinatorial).

* First regret bound for GP-BayesUCB.

» Bayesian regret of O(K+/Trx), where
vri 18 the maximum information gain of
'K arms.
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