
Automated N-Version
Programming with LLMs

Javier Ron Arteaga <javierro@kth.se>
School of Electrical Engineering and Computer Science, KTH

N-Version programming is a
software development ap-
proach, which consists of creat-
ing N implementations or ver-
sions of a speci�c program [1].
When these versions are simul-
taneously executed, errors can
be timely detected and mitigat-
ed by comparing their outputs.
are avoided. [2].

Galapagos is evaluated in 4 di-
mensions: (1) to what extent is
it able to produce equivalent
code variants with LLMs; (2) to
what extent is it able to pro-
duce code variants which are
diverse both on disk and at exe-
cution-time; (3) can it harden
critical sections of software
against miscompilation bugs,
and; (4) how much perfor-
mance overhead does it intro-
duce.

To facilitate automatic generation of N-Version programs, we
design, implement and evaluate Galapagos: a tool for automa
ed, veri�ed N-Version programming. Galapagos consists of a
pipeline with 3 passes: Diversi�cation, validation and harnessing.

First, the Diversi�cation pass generates di�erent variants of the
reference (I1) by calling an LLM API. Second, the collection of
generated variants (In) is passed to the Validation pass, which �l-
ters out non-viable variants. The Validation pass proceeds
through a sequence of validation steps: compilation, testing,
and formal equivalence check. Last, the Harnessing pass uses
the resulting variants to assemble an executable, where the
original function is replaced by an N-Version implementation of
that function with corresponding driver and cross-check (CC)
points.

1 Context

3 Evaluation

4 Results

2 Contribution

I1 I2 I3

Driver

CC

I1

I2

I3

In

I2

I3

In

1. Diversification 2. Validation 3. Harnessing

… …

Behavioral diversity of variantsEquivalent variant generation

600 variants generated from
30 reference programs

170 equivalent variants anal-
ized from Diversi�cation pass

170 equivalent variants, at
least 1 equivalent variant for
23 programs

127 unique variants, at least 1
unique variant for 23 programs

Miscompilation mitigation

3 miscompilation bugs se-
lected from the Clang com-
piler

3 Miscompilation bugs mit-
igated

Performance Overhead

23 N-Version programs
from Harnessing pass

Performance overhead
close to 1x per additional
version in average

