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Architecture

We propose an end-to-end robust Persistent Homology/ML pipeline, to learn representations with stability guarantees w.r.t. metrics in the data space. We
analyze the robustness in the framework of Adversarial Machine Learning.

Persistent Homology

From a point cloud we can construct a Vietoris-Rips complex, a combi-
natorial object encoding its geometry, parametrized by t ∈ [0,∞).

By taking homology we get (for each homological degree) a vector space
for each t and a linear map for each τ ≤ t ∈ [0,∞).

This object can be decomposed into a persistence diagram
D = {(ai, bi)}Ni=1 and endowed with a Wasserstein-type distance
Wp (p ∈ [1,∞]).

Lipschitz continuity of Wp w.r.t. various metrics on input spaces has been
shown. For instance for dGH Gromov-Hausdorff distance between finite
metric spaces X,Y :

W∞(D(X), D(Y )) ≤ dGH(X,Y ).

Stable Rank vectorization

Given a persistence diagram D = {(ai, bi)}Ni=1 and an increasing bijection
F we have: F (D) = {(F (ai), F (bi))}Ni=1

The stable rank of D corresponding to F and p ∈ [1,∞] is the function:

r̂ankp,F (D)(t) := min{rank(D′) | D′ ∈ PD and Wp(F (D), F (D′)) ≤ t}

A distance d▷◁ can be defined between stable ranks, equivalent to an L∞
distance.

Proposition d▷◁(r̂ankp,F (D), r̂ankp,F (D
′)) ≤ KWp(D,D′)

where K is the Lipschitz constant of F .

Lipschitz Neural Network

L∞ Neural Networks (Zhang et al.) propose to replace the MLP layers
with layers composed of neurons of the form:

u(x, w, b) = ||x− w||∞ + b.

Neural networks formed by such layers are by design 1-Lipschitz stable
w.r.t. input in an L∞ space.

Robustness in Adversarial Machine Learning

We have a PH pipeline ϕ : X → {1, . . . , C}, which classifies samples in
the data space X to one of C classes.

A sample x ∈ X with ground truth label c is ϵ-robust if:

g(x′) = c,∀x′ ∈ X s.t. dX (x, x′) ≤ ϵ.

If the whole PH pipeline ϕ has known Lipschitz constant K, we can
derive its robustness in Adversarial ML sense.

For a sample x ∈ X , we define its margin Mx = ϕ(x)cx −maxi ̸=cx ϕ(x)i,
where cx is the ground truth label of x.

Then x is ϵ-robust for ϵ = Mx

2K .

Results

We consider the dataset with realizations of point processes introduced
in Perslay (Carrière et al.):

We can compare a lower-bound of ϵ-robustness for our pipeline (SRN)
to an upper-bound for Perslay (derived from methods to find adversarial
examples), at the level of persistence diagrams.

Acc. at ϵ = 0 10−5 10−2 10−1 1

Perslay (H1 only) 84.4 27.4 27.4 24.8 24.8
SRN (H1 only) 79.6 79.6 78.8 74.6 51.3


