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Deep learning is converging towards the use of foundation models. 2
We attempt to investigate the transferability of these to medical image
classification tasks. We explore different training settings to fully harness

their potential and gain insights on their applicability in this domain. METHODS

Medical datasets:
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Baselines:
- DINOvV1 7]
Foundation models: - ResNet152 g
- SAM (88.8M parameters . .
SAM ( P A Evaluation scenarios:
- SEEM (29.9M parameters) 2] - Frozen foundation with linear head
- DINOvZ2 (86.5M parameters) 13 - Unfrozen foundation with linear head
- OpenCLIP (86.2M parameters) [4] . - Frozen foundation with appended DeiT classifier
- BLIP (85.7M parameters) [5 /\ | 0 - Unfrozen foundation with appended DeiT classifier
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2 - - DINOV2 serves as a solid base for transfer learning and
& SEEM competes effectively while being a smaller model.
2 Other foundations fail to outperform baselines effectively.
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