
Robustness Metrics for Motion Planning and
Control with STL Specifications

Joris Verhagen, KTH Royal Institute of Technology
Division of Robotics, Perception and Learning

Robots may not be able to follow a pre-specified trajectory
- SLAM mapping errors
- External Disturbances
- On-board timing issues
- Parameter uncertainty
But robots should satisfy a specification as best as possible!

Goal: Maximize robustness metrics

Asynchronous Time Robustness

References

Robust STL Satisfaction: Time-robustness and Disturbance-robustness

Each state of a robot can be shifted by a unique time-shift

How far can we shift signals such that the predicate still holds

Disturbance Robustness

"Robot 1 and 2 should be close enough to hand over a
product between 12 and 15 seconds"

Bezier curves for
curvature and time
Continuous-time
trajectory and speed-up!

Asynchronous time robustness: Robot 1 can be delayed by
x while Robot 2 can be advanced by x and still satisfy STL

Always between
4 and 8, be at A

Eventually between
4 and 8, be at B

Always between 12
and 15, be eps close

Predicate

We need to look at overlap
between segments

[1]: Verhagen, J., Lindemann, L., & Tumova, J. (2024). Temporally robust
multi-agent stl motion planning in continuous time. ACC IEEE
[2]: Verhagen, J., Lindemann, L., & Tumova, J. (2024). Robust STL
Control Synthesis under Maximal Disturbance Sets. CDC IEEE

An underwater robot has some STL
mission
- What is most time-robust?
- What is most space-robust?
- But what kind of behavior do we want?

Maximize the 'size' of the disturbance set while the closed-
loop evolution of the system satisfies STL

A joint controller and disturbance optimization: intractible!

We take an algorithmic search approach
1. Rewrite the STL spec in disjunctive normal form

(this and that) OR (this and that) OR (this and that)
2. Take a subspecification (this and this) and go

backwards in time, from operator to operator
o Check whether the BRS from one predicate

intersects the other predicate
o No? Decrease |D|

But, this is tricky due to temporal flexibitility in Eventually
and Until operators!

