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Motivation & Research Goals

Federated learning (FL) is a decentralized learning paradigm that relies on efficient network communications for model ag-
gregation when jointly training machine learning models. However, network communication in FL may become a bottleneck
whenever there are many participating clients, the number of model parameters is high, or the network connections are poor.
To address this problem, we propose a FL algorithm with multiple local steps (denoted FedMLS). FedMLS reduces the fre-
quency of parameter aggregation, and hence the number of client-server communications, by increasing the number of local
updates between aggregations. For a solution with accuracy ε, the proposed FedMLS algorithm achieves a communication
complexity of O(ε−1) compared to conventional approaches with communication complexity of O(ε−2). Numerical experiments
confirm that FedMLS provides a substantial reduction in the communication time compared to existing algorithms, and does
this without relying on strong convexity nor on gradient similarity assumptions.

Methods

The standard FL problem is usually stated with the problem template

min
x1,...,xN ∈Rd

F (x) ∶=
1

N

N

∑
i=1

fi(xi)

subject to X = {x∣x1 = x2 = ⋯ = xN}.

(1)

where F ∶ Rd → R denotes joint loss function, fi ∶ Rd → R denote the
ith client’s local loss function.

Thekumparampil et al. [1] introduced the MOreau Envelope Pro-
jection Efficient Subgradient method (MOPES), a regularized Equa-
tion (1), namely

min
x∈X ,x′∈X ′

Ψ(x,x′) ∶= F (x′) +
1

2λ
∥x − x′∥2 , (2)

where X ′ is a Euclidean norm ball.

Proximal operator of Equation (2) with respect to the indicator func-
tion, IX (x), corresponds to the projection, projX (x) while the one for
F (x′) requires solving the subproblem:

proxF /β(x
′
) = argmin

u∈X ′
F (u) +

β

2
∥u − x′∥

This leads to the following update steps, for k = 1, . . . ,K ∶
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βk =
4
λk

, γk =
2

k+1
[yk, y

′
k] = (1 − γk)[xk−1, x′k−1] + γk[zk−1, z

′
k−1]

zk = projX (zk−1 −
1

βkλ
(yk − y

′
k))

(z′k, z̃
′
k) = approx-proxF /βk

(z′k−1 −
1

βkλ
(y′k − yk))

[xk, x
′
k] = (1 − γk)[xk−1, x′k−1] + γk[zk, z̃

′
k]

By separability of F , the approx-prox proceeds as follows for t =
1, . . . , Tk [2]:
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ûk,t = uk,t−1 − 1
(1+t/2)(

1
βk
∇̃f(uk,t−1) + uk,t−1 −wk)

uk,t = projX ′(ûk,t)

ũk,t = (1 − θt)ũk,t−1 + θtuk,t where θt =
2(t+1)
t(t+3)

Selected Results

We have developed the FL version of MOPES, denoted Federated
Learning with Multiple Local Steps (FedMLS) to solve Equation (1).

Algorithm 1 Federated Learning with Multiple Local Steps (FedMLS)

1: procedure FedMLS(G,L,x⋅,0,K,D,σ2, λ)
2: zi,0 = x

′
i,0 = xi,0 = z

′
i,0 = x⋅,0

3: for k = 1, . . . ,K do
4: βk =

4
λk

, γk = 2
k+1 , and Tk = ⌈

(4G2+σ2)λ2Kk2

2D̃
⌉

5: y′i,k = (1 − γk)x
′
i,k−1 + γkz

′
i,k−1

6: Client sends y′i,k
— Server Side Starts —

7: yk = (1 − γk)xk−1 + γkzk−1
8: zk = zk−1 − k

4
(yk −

1
N ∑

N
i=1 y

′
i,k)

9: xk = (1 − γk)xk−1 + γkzk
10: Server sends yk to each client

— Server Side Ends —
11: (z′i,k, z̃

′
i,k) = LocalTraining( 1

λ
(y′i,k − yk), z

′
i,k−1, βk, Tk)

12: x′i,k = (1 − γk)x
′
i,k−1 + γkz̃

′
i,k

13: end for
14: return xK

15: end procedure
16: procedure LocalTraining(g, u0, β, T )
17: ũ0 = u0

18: for t = 1, . . . , T do
19: θt =

2(t+1)
t(t+3)

20: ût = ut−1− 1
(1+t/2)β (∇̃fi(ut−1) + β(ut−1−u0 + g/β))

21: ut = ût ⋅min(1, R
∥ut∥)

22: ũt = (1 − θt)ũt−1 + θtut

23: end for
24: return (uT , ũT )

25: end procedure

Theorem 1. Let X ′ be the Euclidean norm ball in Rd with
radius R centered at the origin and X be the consensus con-
straint where X ⊆ X ′. Let the joint loss function F ∶ X ′ → R
be a proper, lower semicontinuous, and convex function with
bounded (sub)gradients, i.e., ∥∇F (x)∥ ≤ G for all x ∈ X ′. As-
sume R is sufficiently large such that there exists a solution
x∗ ∈ argminx∈X F (x) such that x∗ ∈ X ′. Then, after K client-
server communication rounds, the FedMLS algorithm outputs
xK ∈ X satisfying

E[F (xK)] − F (x
∗
) ≤

10∥x0 − x
∗∥2 + 8D̃

λK(K + 1)
+G2λ

2

for any choice of λ > 0 and D̃ > 0.

Theorem 2. Let λ = ε/G2 and D̃ = ∥x0 − x
∗∥2. Choosing K =

⌈ 6G
√

2D̃
ε
⌉ which is of orderO(G

√
D̃

ε
) communication rounds, then

FedMLS achieves an ε-suboptimal solution satisfying

E[F (xK)] − F (x
∗
) ≤ ε.

Moreover, if we choose Tk = ⌈
(4G2+σ2)ε2Kk2

2G4D̃
⌉ then the total num-

ber of local training rounds, ∑K
k=1 Tk is O( (4G

2+σ2)D̃
ε2

) .
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