How to Train Neural Networks for Classical Planning

Markus Fritzsche, PhD Student, Linköping University Machine Reasoning Lab, AIICS, IDA Supervisors: Prof. Hector Geffner, Simon Ståhlberg

Background and Motivation

- Planning Problem: $P = \langle D, I \rangle$ with
 - Domain $D = \langle \mathcal{P}, \mathcal{A} \rangle$ consisting of
 - * Predicate symbols \mathcal{P}
 - * Action schema \mathcal{A}
 - Instance $I = \langle O, \mathcal{I}, \mathcal{G} \rangle$ consisting of * Object symbols *O*

Example

- Stack all blocks on top of each other in alphabetical order.
- Typically, solved using heuristic search.

* Initial state \mathcal{I} * Goal state \mathcal{G}

Motivation

- Idea: Learn the optimal heuristic on small/simple problems, generalize to large/complex ones.
- Challenge: Generalization is hard for neural networks when the test domain differs from the training domain.

Graph Representation of Planning States

States as Set of Atoms

- State: $S = \{ p(o_1, \dots, o_k) \mid p \in \mathcal{P}, o_1, \dots, o_k \in O \}$
- Goal: $\mathcal{G} = \{ p(o_1, \dots, o_k) \mid p \in \mathcal{P}, o_1, \dots, o_k \in O \}$

State Example

Initial State

Goal State

GNNs to Calculate the Optimal Heuristic

The Optimal Heuristic

- We want to calculate the length of the shortest path from the current state to the goal state.
- $h^* = \sum_{1 \le i \le l} c(a_i)$ where
- $-a_i$ is an action

State as Graph Representation

- Labeled graph: G = (V, E, l) with
 - Nodes: $V = \{o \mid o \in O\}$
 - Edges: $E = \{(o_1, \dots, o_k) \mid p(o_1, \dots, o_k) \in S \cup G\}$
 - Labeling function: $l(o_1, \ldots, o_k) = \{p \mid p(o_1, \ldots, o_k) \in S \cup \mathcal{G}\}$

- (a_1, \ldots, a_l) is a plan that solves the task with minimum cost
- -c is a cost function
- i.e., we want to learn $f_{\Theta}(s) = h^*(s)$ where f is a neural network with parameters Θ .

Graph Neural Networks (GNNs)

- Node initialization: $h_v^0 = 0^d$ $\forall v \in V$ where d is the dimension of the node representation.
- Message: $m_{v_1,...,v_k}^i = MSG_{l(v_1,...,v_k)}(h_{v_1}^i,\ldots,h_{v_k}^i)$
- Aggregation: $agg_m_v^i = AGG(\{m_{v_1,\ldots,v_k}^i \mid v \in (v_1,\ldots,v_k)\})$
- Combination: $h_v^{i+1} = COMB(h_v^i, agg \ m_v^i)$
- Readout: $h_G = READOUT(\{h_v^N \mid v \in V\})$ with N being the number of layers.

Challenges (My Research Focus)

• Example:

Generalization

• Must learn features invariant to graph size, e.g., max aggregation vs sum aggregation.

Expressiveness

- GNNs are based on Weisfeiler-Lehman (WL) test, but this test cannot distinguish all graph structures.
- Hence, GNNs cannot learn the optimal heuristic for all tasks.

