
HowtoTrainNeuralNetworks forClassical
Planning

Markus Fritzsche, PhD Student, Linköping University
Machine Reasoning Lab, AIICS, IDA

Supervisors: Prof. Hector Geffner, Simon Ståhlberg

Background and Motivation

• Planning Problem: P = ⟨D, I⟩ with

– Domain D = ⟨P ,A⟩ consisting of
∗ Predicate symbols P
∗ Action schema A

– Instance I = ⟨O, I,G⟩ consisting of
∗ Object symbols O
∗ Initial state I
∗ Goal state G

Example

• Stack all blocks on top of each other in alphabetical order.

• Typically, solved using heuristic search.

Easy Task Hard Task

a
b

c a
b

c e
g
h

f
d

Motivation

• Idea: Learn the optimal heuristic on small/simple problems, generalize to large/complex ones.

• Challenge: Generalization is hard for neural networks when the test domain differs from the training domain.

Graph Representation of Planning States

States as Set of Atoms
• State: S = {p(o1, . . . , ok) | p ∈ P, o1, . . . , ok ∈ O}
• Goal: G = {p(o1, . . . , ok) | p ∈ P, o1, . . . , ok ∈ O}

State Example Initial State Goal State

objects: a, b, c

atoms: on(b, a)

clear(b)

clear(c)

on_table(a)

on_table(c)

goal: on(a, b)

on(b, c)

actions: pick_up(b)

pick_up(c)

a
b

c c
b

a

State as Graph Representation
• Labeled graph: G = (V,E, l) with

– Nodes: V = {o | o ∈ O}
– Edges: E = {(o1, . . . , ok) | p(o1, . . . , ok) ∈ S ∪ G}
– Labeling function: l(o1, . . . , ok) = {p | p(o1, . . . , ok) ∈ S ∪ G}

• Example:

a b c

on_table

clear clear

on_table

on

goal_on

goal_on

GNNs to Calculate the Optimal Heuristic

The Optimal Heuristic
• We want to calculate the length of the shortest path from the current

state to the goal state.

• h∗ =
∑

1≤i≤l c(ai) where

– ai is an action
– (a1, . . . , al) is a plan that solves the task with minimum cost
– c is a cost function

• i.e., we want to learn fΘ(s) = h∗(s) where f is a neural network with
parameters Θ.

Graph Neural Networks (GNNs)

• Node initialization: h0
v = 0d ∀v ∈ V where d is the dimension of the

node representation.

• Message: mi
v1,...,vk

= MSGl(v1,...,vk)(h
i
v1 , . . . , h

i
vk
)

• Aggregation: agg_mi
v = AGG({mi

v1,...,vk
| v ∈ (v1, . . . , vk)})

• Combination: hi+1
v = COMB(hi

v, agg_mi
v)

• Readout: hG = READOUT ({hN
v | v ∈ V }) with N being the number

of layers.

Challenges (My Research Focus)

Generalization

• Must learn features invariant to graph size, e.g., max aggregation vs
sum aggregation.

Expressiveness

• GNNs are based on Weisfeiler-Lehman (WL) test, but this test cannot
distinguish all graph structures.

• Hence, GNNs cannot learn the optimal heuristic for all tasks.


