
T
ra

d
itio

n
a

l a
n
a

ly
s
is

 a
p
p

ro
a

c
h

pattern link(src: CommSubsys, trg: CommSubsys){

 CommSubsys.target(src, trg);

} or {

 CommSubsys.fallback(src, trg);

}

@BasicEvent(probability=0.90483741803596)

pattern operationalKA(obj: EObject){

 Spacecraft.subsys(_, obj);

 KaComm(obj);

} //…

@CompoundEvent

pattern operational(obj: EObject){

 find operationalKA(obj);

} or // ...

@CompoundEvent

pattern ready(comm: CommSubsys){

 GroundStation.subsys(_, comm);

} or {

 Spacecraft.subsys(sat, comm);

 find online(sat);

 find operational(comm);

}

@CompoundEvent

pattern online(sat: Spacecraft){

 Spacecraft.subsys(sat, comm);

 find operational(sat);

 find operational(comm);

 find link(comm, trg);

 find ready(trg);

}

@CompoundEvent

pattern available(pld: Payload){

 Spacecraft.payload(sat, pld);

 find online(sat);

}

@Weight(lhsname="cvr", class="Performability",

function="calculate")

pattern coverage(cvr: java Double){

 cvr == Weight find available(_);

}

pattern good(){

 find coverage(quality);

 check(quality >= 0.3157);

}

class Performability {

 public static double calculate(int count){…}

}

Architecture Synthesis and

Dependability Evaluation of System Models
Máté Földiák

Dept. of Computer and Information Science

Supervisors: Dániel Varró, Lena Buffoni

Safety and reliability play a crucial role in the operation of critical cyber-physical systems, such as trains, aircrafts or satellites.

Selecting an optimal system architecture early, is imperative to satisfy such constraints while having an efficient design process, yet

existing design space exploration (DSE) tools do not include sufficient support for probabilistic requirements, like minimum availability.

My goal is to fill in this gap by developing a method, that supports efficient probabilistic analysis and reasoning in DSE.

From requirements

to early system design

References
[1] Probabilistic Graph Queries for Design Space Exploration Under Uncertainty

Máté Földiák,

2024, MODELS 24 Doctoral Symposium

[2] Road to a reactive and incremental model transformation platform:

 three generations of the VIATRA framework

Dániel Varró, Gábor Bergmann, Ábel Hegedűs, Ákos Horváth, et al.

2016, International Journal on Software and Systems Modeling (SoSyM)

[3] Refinery: Graph Solver as a Service

Kristóf Marussy, Attila Ficsor, Oszkár Semeráth, and Dániel Varró

2024, ICSE: Tool Demonstration Track

Motivation

We propose probabilistic graph queries, a formalism

that extends the high-level VIATRA Query Language [2]

with probabilistic semantics for precise analysis. It uses

lightweight language extensions to insert probabilistic

interpretation into queries, highlighted in grey bellow, and

its semantics are in line with the semantics of regular

graph queries. Furthermore, it supports incremental

analysis through the VIATRA Query Engine and

stochastic decision diagrams.

Probabilistic Analysis

with Graph Queries

System architecture design relies on iteratively

refining a candidate system architecture of an

arbitrary domain by applying small mutations.

Correctness is checked every iteration to guide the

process towards an optimal, or close to optimal

solution. However, stochastic analysis tool are

unable to efficiently handle incremental changes

and epistemic uncertainty.

Extending the expressiveness by introducing more event types [1], integrating it to Refinery, and developing the

necessary formalism for handling 4-valued partial models as inputs is work in progress.

Example
A CommSubsys is ready (to

receive data), if it is equipped

to the ground station, or if the

containing satellite is online.

Example
Each KaComm type

hardware component on a

spacecraft is operational

with a probability of ~90.5%.

Language:

compound event
Indicators, whether a higher

function (or service) satisfy a

condition, dependent on other

imperfect components and

functions.

Result
Can reduce analysis

time, depending on

domain complexity

and size of change.

Language:

quantification
The user can quantify event

probabilities and derive

custom metrics to check

extra-functional consistency.

Language:

basic events
Input from external sources

that describe known

reliability related properties

of the component. In this

case, availability.

R
e
fin

e
m

e
n
t o

f d
e
s
ig

n

Custom

transformation
Run external

analysis
E

v
a

lu
a

te

m
o

d
e

l

Back

annotation

Virtual

transformation
Run

analysis

E
v
a

lu
a

te

m
o

d
e

l

Update results

R
e
fin

e
m

e
n

t o
f d

e
s
ig

n

Refinement
Changes between

models are small.

Incremental modeling
Track relevant changes in

the system model.

External analysis
Even simple reliability models are

computationally hard to evaluate.

Evaluation
Detect infeasible

designs early.

R
e
fin

e
m

e
n
t o

f d
e
s
ig

n

Repetition
10 000+ times

Uncertain

relation Uncertain

type

Uncertain

objects

In
c
re

m
e
n
ta

l
s
to

c
h
a
s
ti
c
 a

n
a
ly

s
is

Type is no

longer uncertain

Incremental analysis
Detect and recompute out of

date intermediate results.

Batch PGQ

Incremental PGQ

	Slide 1

