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CONTEXT

Given a true theorem, is there an ef-
ficient algorithm finding a proof for
it? If not, what is the computational
complexity of this task? In classi-
cal work form the 90s, Krajicek and
Pudlak (1998) and Bonet, Pitassi, and
Raz (2000) ruled out efficient proof
search search unless a lot of classical
cryptography, like RSA, breaks.

PROBLEM

This line of work did not rule out
the possibility of efficient quan-
tum algorithms for automating
mathematics. Quantum computers
breaks RSA due to Shor’s algorithm,
and many other cryptographic as-
sumptions used in the 90s. Could
there be efficient quantum algo-
rithms for proving mathematical

CONTRIBUTION

We prove that, if there exists an effi-
cient quantum algorithm for finding
proofs in any strong enough propo-
sitional proof system, then a lot of
post-quantum cryptography be-
lieved to be secure will break! In par-
ticular, all the lattice-base cryptogra-
phy based on the Learning with Er-
rors (LWE) assumptions fails!
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The standard way to mathematically approach
the study to proof search is via the framework
of automatability pioneered by Bonet, Pitassi,
and Raz (2000). For a given proof system S,
an automating algorithm, if it exists, performs
proof search in the following sense: given
a statement ¢ (encoded as a propositional
tautology), outputs a proof x in the system
S in time polynomial in the length of the
shortest proof.
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On the right, different proof systems are arranged
from weakest (at the bottom) to strongest (at W
the top). In yellow, proof systems known to be

non-automatable unless LWE or Diffie-Hellman

breaks. In pink, proof systems not known to be

quantum automatable unless NP C BQP.
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