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Background
Conventional 3D detection methods often rely on predefined, closed sets of object
categories, requiring expensive retraining and new annotations to adapt to new do-
mains. Recent advances in vision-language models have enabled open-vocabulary
detection in 2D., but applying these approaches to 3D detection typically requires
dense 3D point clouds constructed from RGB-D sensors or extensive multi-view
imagery. Existing methods are also constrained by the availability of high-quality
3D data, limiting their practicality in many real-world scenarios.

We propose a novel, training-free framework for open-vocabulary 3D object de-
tection using sparse multi-view RGB images.

Contributions
▶ We introduce a novel, training-free framework for
open-vocabulary 3D object detection using sparse multi-view
RGB images.

▶ We leverage pre-trained, off-the-shelf 2D networks for proposal
generation and monocular depth estimation.

▶ We propose a three-step pipeline involving single-view proposal
generation, multi-view refinement using feature consistency, and
3D bounding box fusion.

▶ Our method achieves competitive results without relying on 3D
data and generalizes to unseen, long-tail vocabularies.
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Overview of SMOV3D. Our method takes as input a sparse collection of posed RGB images together with a collection of text query prompts. The
pipeline then conists of three steps. i) Monocular 2D Proposals For each prompt and image we perform 2D detection yielding a set of masks. These
are then lifted to 3D using monocular depth. ii) Multi-view Refinement Lifted 3D point clouds are refined by optimizing a multi-view featuremetric
loss that combines both photometric and CLIP consistency. iii) 3D Clustering and Fusion. The optimized 3D point clouds are aggregated in 3D and
greedily fused using a simple heuristic. The output is a collection of 3D bounding boxes. For visualization we show them overlayed on the ground-truth
mesh.

Selected Results
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Figure 1:Qualitative results on ScanNet. Zero-shot 3D object detect detection, using the ScanNet10
categories as prompts.

Method GT Depth 3D proposal Mean toilet bed chair sofa dresser table cabinet bookshelf pillow sink

OV-3DETIC [2] 3 3DETR† 12.7 49.0 2.6 7.3 18.6 2.8 14.3 2.4 4.5 3.9 21.1
Object2Scene [4] 3 L3DET† 24.6 56.3 36.2 16.1 23.0 8.1 23.1 14.7 17.3 23.4 27.9
FM-OV3D [3] 3 3DETR† 21.5 55.0 38.8 19.2 41.9 23.8 3.5 0.4 6.0 17.4 8.8
OpenIns3D [1] 3 Mask3D† 43.7 79.5 70.5 76.9 15.8 0.0 53.1 40.1 41.2 7.1 53.1
SMOV3D (Ours) RGB-D 3 - 39.2 78.7 25.3 30.2 69.4 23.8 26.2 4.7 22.4 58.1 53.7

SMOV3D (Ours) Metric3Dv2† 7 - 38.3 61.8 33.6 28.4 71.1 37.5 29.7 1.3 18.5 52.7 48.3
SMOV3D (Ours) DepthAnythingv2 7 - 30.8 61.3 26.4 18.2 61.3 32.0 23.2 2.2 16.3 37.5 30.0

Table 1:Open-vocabulary Object Detection on ScanNet10. We compare our method to point cloud-based methods. "†" denotes a component trained on
ScanNet.

Method Head Common Tail

Object2Scene [4] - 10.1 3.4
OpenIns3D [1] with RGB-D 25.6 20.4 16.5
SMOV3D (Ours) RGB-D 21.0 27.6 23.2

SMOV3D (Ours) Metric3Dv2 18.4 18.6 22.6
SMOV3D (Ours) DepthAnythingv2 11.7 18.9 11.9

Table 2:Open-vocabulary Object Detection on Scan-
Net 200. We present results (mAP25) for the Head,
Common and Tail category splits. Our method per-
forms just as well on long-tail classes (Tail) as on the
most frequent ones (Head).
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