Joint CPU-FPGA Hardware-Aware Quantized
Training of Graph Convolutional Networks

II u LINKOPING Olle Hansson, Linkoping University
®

UNIVERSITY Department of Electrical Engineering

Introduction Results

Pre-processing is crucial now that we mix different matrices in the same computation
pipeline. The data distributions for the different matrices can become significantly more
similar in terms of range and precision after scaling.

Current trends seem to be to move Artificial
Intelligence (Al) systems into more applications and
closer to the user. This transition would require
smaller and more energy-efficient models. One of Unscaled data distribution Scaled data distribution
the most common ways to achieve this is by
performing arithmetic operations at reduced
precision by guantizing the model's operands. This
work extends our previous work [1] that presented
an investigation of using the graph neural network
accelerator gFADES to accelerate the forward pass
of the backpropagation training loop by also
Including the backward pass.
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Training accuracy results of only quantizing the forward pass of the backpropagation
gFADES Computation Architecture algorithm: In this case, the backward pass is done on the processing system of the FPGA
The gFADES design is the hardware computation In 32-bit floating-point precision.
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To make the floating-point values from the PyTorch Epoch Epoch Epoch
model map correctly to the fixed-point format of the Execution speedup of the kernel measurement. The kernel measurement is taken as
accelerator scaling and casting have to be done in a close as possible to the computation of the tensor multiplication, not including any pre-
pre-processing step. and post-processing. Additional speedup results in inference mode have been done in our
N previous work [3].
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