

UPPSALA UNIVERSITET

Learning incomplete factorization preconditioner for GMRES

Department of Information Technology, Uppsala University, Sweden

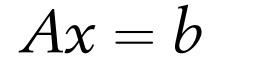
Overview LearnedLU preconditioner

We accelerate the GMRES algorithm using graph neural networks for solving large-scale linear equation systems

$$\begin{array}{c}
2.2 \\
0 \\
0
\end{array}
\end{array}$$

$$\begin{array}{c}
2.2 \\
0 \\
0.5 \\
2.1 \\
0.5 \\
2.1 \\
1.7 \\
3.2
\end{array}$$

- Utilize the connection of graphs and sparse matrices to construct a GNN architecture
- Train the neural network to predict a sparse factorization of the matrix A which is used as a preconditioner for the GMRES method
- Analysis of different loss functions to train the preconditioner
- ► Fast to compute and problem specific



Learned LU preconditioner

Replace hand-engineered preconditioners for the GMRES algorithm with outputs produced by a graph neural network

2.4

0.5

2.1

 $\mathbf{0}$

 $\mathbf{3.2}$

- Two design requirements for preconditioning matrix P:
 - Non-singularity
- Sparsity to limit resource requirements
- ► Learn the sparse LU factorization of P instead
- Mapping the matrix A to L and U is parameterzied by a graph neural network
- The training objective is to predict an incomplete factorization of the matrix A subject to sparsity constraints:

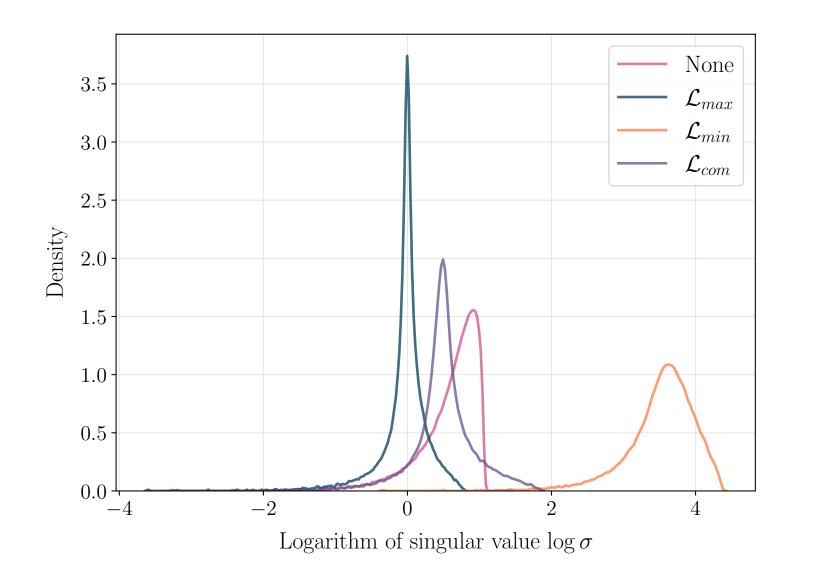
 $\begin{array}{ll} \min_{\theta} & d(A, L_{\theta}U_{\theta}) \\ \text{s.t.} & (L_{\theta})_{ij} = 0 \quad \text{if} \quad A_{ij} = 0 \\ & (U_{\theta})_{ji} = 0 \quad \text{if} \quad A_{ji} = 0 \end{array}$

- ► The choice of distance function *d* influences the results
- ► Factorized *P* can be easily inverted using forward-backward substitution

Loss functions

We analyze different loss functions and show their connections to singular values of the preconditioned system

- $\mathcal{L}_{\max} = ||A P||_F$: Minimize large singular values
- $\mathcal{L}_{\min} = \|PA^{-1} I\|_F$: Maximize small singular values
- \mathcal{L}_{com} : Linear combination of both loss functions



Graph neural network architecture

- The problem matrix A is interpreted as the adjacency matrix of the graph (Coates graph representation)
- Sparsity constraints controlled via the edges used for message passing
 Adding additional edges allows more non-zero elements in the preconditioner
 - \triangleright This allows a better approximation of the inverse of *A*
 - But more computational resources are required to train the model
- Positional encoding via the edge features of break permutation equivariance
- Ensuring invertability of preconditioner P = LU
 - \triangleright The matrix *L* is constructed to have unit diagonal
 - \triangleright Activation function for diagonal elements of matrix U
 - Continuous approximation of the activation function during training

Background: GMRES

- ► GMRES is a iterative method for linear equation systems
- Method of choice for large-scale and sparse problems (e.g. PDE discretizations)
 Convergence depends on the spectral properties (singular values) of the matrix (and the right-hand side b)

Efficient loss approximation

Loss functions allow efficient approximation via Hutchinson's trace estimator

 $\|M\|_F^2 \approx \|Mz\|_2^2 \quad z_i$ i.i.d. Gaussian distributed requires only matrix-vector products

Results

Testing on synthetic PDE problems from the finite element method:

	Method	$\sigma_{\min} \uparrow$	$\sigma_{\max}\downarrow$	$\kappa\downarrow$	$\ \ \boldsymbol{P} - \boldsymbol{A} \ _F \downarrow$	$\ oldsymbol{P} oldsymbol{A}^{-1} - oldsymbol{I} \ _F \downarrow$	$ $ Time \downarrow	Iterations \downarrow
Precond.	No preconditioner	0.0014	20.70	31152.94	255.26	1577.65	30.85	1153
	Jacobi	0.0003	5.16	31166.13	205.83	6319.45	30.12	1152
	$\mathrm{ILU}(0)$	0.0006	30.32	120740.90	138.31	3688.45	3.33	413
$\mathbf{P}_{\mathbf{I}}$	Learned IC	0.0006	7.58	27405.57	143.23	3719.47	12.84	692
Loss	\mathcal{L}_{\max} : Equation (5)	0.0007	5.00	16139.46	88.76	3261.23	3.67	437
	\mathcal{L}_{\min} : Equation (6)	1.1375	20318.88	37030.72	287.62	50.05	24.41	1054
	$\hat{\mathcal{L}}_{\min}$: Equation (7)	-	-	-	287.71	50.30	130.01	2192
	\mathcal{L}_{com} : Equation (8)	0.0017	52.92	66691.71	197.82	1240.60	3.42	418

Summary & Conclusion

- Clustered singular values are often better for convergence
- Faster convergence is obtained by solving a preconditioned system: $AP^{-1}v = b$
 - where $P^{-1} \approx A^{-1}$ is the preconditioner
- ► Trade-off between time required to compute the preconditioner *P*⁻¹ and resulting speedup
- Extreme cases: $P^{-1} = A^{-1}$ (direct method) and $P^{-1} = I$ (no speedup)
- Typical preconditioners are often hand-engineered and domain specific: e.g. Jacobi, incomplete LU, multigrid methods

- Combination of machine learning and classical optimization algorithms
- Graph neural networks are natural computational backends for linear algebra and learned optimization
- ► Future research can integrate both learned and classical preconditioners

Link to paper

paul.hausner@it.uu.se, aleix.nieto-juscafresa@it.uu.se, jens.sjolund@it.uu.se