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Overview LearnedLU preconditioner

We accelerate the

GMRES algorithm

using graph neural

networks for solving

large-scale linear

equation systems

Ax = b

I Utilize the connection of graphs and sparse

matrices to construct a GNN architecture

I Train the neural network to predict a sparse
factorization of the matrix A which is used as a
preconditioner for the GMRES method

I Analysis of different loss functions to train the
preconditioner

I Fast to compute and problem specific

preconditioner

Learned LU preconditioner

I Replace hand-engineered preconditioners for the GMRES algorithm with

outputs produced by a graph neural network

I Two design requirements for preconditioning matrix P:
. Non-singularity
. Sparsity to limit resource requirements

I Learn the sparse LU factorization of P instead

I Mapping the matrix A to L and U is parameterzied by a graph neural network

I The training objective is to predict an incomplete factorization of the matrix A
subject to sparsity constraints:

minθ d(A,LθUθ)

s.t. (Lθ)ij = 0 if Aij = 0

(Uθ)ji = 0 if Aji = 0

I The choice of distance function d influences the results

I Factorized P can be easily inverted using forward-backward substitution

Graph neural network architecture

I The problem matrix A is interpreted as the adjacency matrix of the graph
(Coates graph representation)

I Sparsity constraints controlled via the edges used for message passing
. Adding additional edges allows more non-zero elements in the preconditioner
. This allows a better approximation of the inverse of A
. But more computational resources are required to train the model

I Positional encoding via the edge features ot break permutation equivariance

I Ensuring invertability of preconditioner P = LU
. The matrix L is constructed to have unit diagonal
. Activation function for diagonal elements of matrix U
. Continous approximation of the activation function during training

Background: GMRES

I GMRES is a iterative method for linear equation systems

I Method of choice for large-scale and sparse problems (e.g. PDE discretizations)

I Convergence depends on the spectral properties (singular values) of the matrix
(and the right-hand side b)

I Clustered singular values are often better for convergence

I Faster convergence is obtained by solving a preconditioned system:

AP−1y = b

where P−1 ≈ A−1 is the preconditioner

I Trade-off between time required to compute the preconditioner P−1 and
resulting speedup

I Extreme cases: P−1 = A−1 (direct method) and P−1 = I (no speedup)

I Typical preconditioners are often hand-engineered and domain specific:
e.g. Jacobi, incomplete LU, multigrid methods

Loss functions

We analyze different loss functions and show their connections to singular values
of the preconditioned system

I Lmax = ‖A− P‖F: Minimize large singular values

I Lmin = ‖PA−1 − I‖F: Maximize small singular values

I Lcom: Linear combination of both loss functions
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Efficient loss approximation

Loss functions allow efficient approximation via Hutchinson’s trace estimator

‖M‖2F ≈ ‖Mz‖22 zi i.i.d. Gaussian distributed

requires only matrix-vector products

Results

Testing on synthetic PDE problems from the finite element method:

Summary & Conclusion

I Combination of machine learning and classical optimization algorithms

I Graph neural networks are natural computational backends for linear algebra
and learned optimization

I Future research can integrate both learned and classical preconditioners
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