[earning incomplete factorization
preconditioner for GMRES
UPPSALA

UNIVERSITET Paul Hausner*, Aleix Nieto Juscafresa*, Jens Sj6lund

NLDL 2025

Department of Information Technology, Uppsala University, Sweden

Overview LearnedLU preconditioner

We accelerate the » Utilize the connection of graphs and sparse
GMRES | 'th matrices to construct a GNN architecture
d1201ritnm

‘ 5 » Train the neural network to predict a sparse
using graph neural 9 4 0 9 9] factorization of the matrix A which is used as a
networks for S()lving 05 3.2 0 preconditioner for the GMRES method
large-scale linear | . » Analysis of different loss functions to train the

_2'1 1.7 0 i preconditioner

equation systems |
» Fast to compute and problem specitic

Ax =0b preconditioner

We analyze different loss functions and show their connections to singular values
of the preconditioned system

» Replace hand-engineered preconditioners for the GMRES algorithm with
outputs produced by a graph neural network

» Two design requirements for preconditioning matrix P: > Luax = ||A — P||p: Minimize large singular values

> Non-singularity > Lo = ||PA™! — I||p: Maximize small singular values

> Sparsity to limit resource requirements » L.om: Linear combination of both loss functions

» Learn the sparse LU factorization of P instead

» Mapping the matrix A to L and U is parameterzied by a graph neural network 351 -
i ﬁmz’n
» The training objective is to predict an incomplete factorization of the matrix A * —— Lo

subject to sparsity constraints: 251

Density

ming d(A, L@ U@) o ”
s.t. (L@)i]' =3 1{: Ai]' = .
(Up)i=0 if A;=0
0.5
» The choice of distance function d influences the results
0.0+ . . ; .
—4 -2 0 2 1
» Factorized P can be easily inverted using forward-backward substitution Logarithm of singular value log o
Graph neural network architecture Efficient loss approximation

» The problem matrix A is interpreted as the adjacency matrix of the graph Loss functions allow efficient approximation via Hutchinson’s trace estimator

IM||% ~ |[Mz||5 z ii.d. Gaussian distributed

requires only matrix-vector products

(Coates graph representation)

» Sparsity constraints controlled via the edges used for message passing

> Adding additional edges allows more non-zero elements in the preconditioner
> This allows a better approximation of the inverse of A

> But more computational resources are required to train the model Results

» Positional encoding via the edge features ot break permutation equivariance Testing on synthetic PDE problems from the finite element method:

» Ensuring invertability of preconditioner P = LU

> The matrix L is constructed to have unit diagonal Method | Opmin T Opax 4 Kl IP—A|pl [[PA'—TI||p| | Time] Iterations |
> Activation function for diagonal elements of matrix U < No preconditioner | 0.0014 2070 3115294 | 255.26 1577.65 30.85 1153
Conti _— £ the activation function durine train; = Jacobi | 0.0003 516 31166.13 205.83 6319.45 30.12 1152
> Continous approximation of the activation function during training E LU©) | 00006 3032 12074090 | 138.31 2 638 4 - 1
¥ Learned IC | 0.0006 7.58 27 405.57 143.23 3719.47 12.84 692
Lmax: Equation (5) | 0.0007 5.00 16 139.46 88.76 3261.23 3.67 437
/)] .. a1 2 ¢ ¢ A, =
Background: GMRES 2 L,:’"““' Equdt%on (E) 1.1375 20318.88 37030.72 287.62 50.05 24.41 1054
= Lmin: Equation (7) - - - 287.71 50.30 130.01 2192
Leom: Equation (8) | 0.0017 52.92 66691.71 197.82 1240.60 3.42 418

» GMRES is a iterative method for linear equation systems

» Method of choice for large-scale and sparse problems (e.g. PDE discretizations))
| Summary & Conclusion
» Convergence depends on the spectral properties (singular values) of the matrix

(and the right-hand side b)

» Combination of machine learning and classical optimization algorithms

» Clustered singular values are often better for convergence , ,
5 5 » Graph neural networks are natural computational backends for linear algebra

» Faster convergence is obtained by solving a preconditioned system: and learned optimization

1,
AP~y =b » Future research can integrate both learned and classical preconditioners
where P~! ~ A~! is the preconditioner

» Trade-off between time required to compute the preconditioner P~! and Link to paper
resulting speedup =] =]
» Extreme cases: P~! = A~! (direct method) and P! = I (no speedup) - '

WALLENBERG Al,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

» Typical preconditioners are often hand-engineered and domain specific:]
e.g. Jacobi, incomplete LU, multigrid methods

paul .hausner@it.uu.se, aleix.nieto-juscafresa@it.uu.se, jens.sjolund@it.uu.se

