Graph-based Orders for Saturated Cost Partitioning

Paul Höft, Linköping University

Supervisors: Jendrik Seipp, David Speck Acknowledgments: Thomas Keller

Optimal Classical Planning

- domain independent input language: PDDL
- A^* -search+admissible heuristic=optimal solution

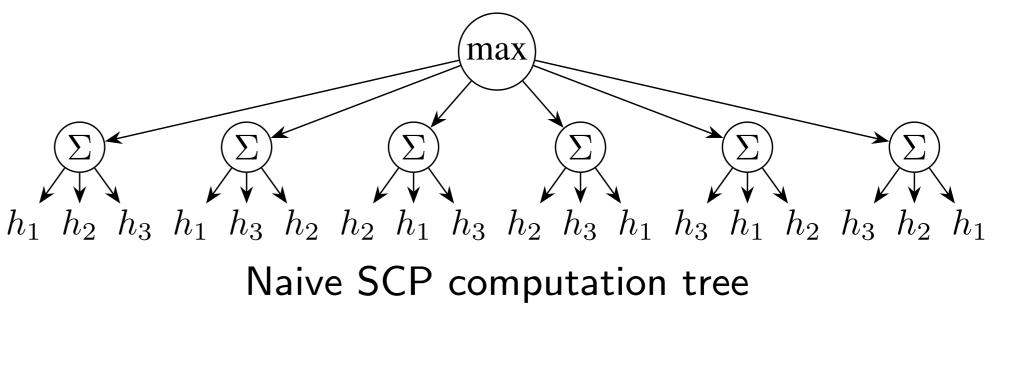
Saturated Cost Partitioning (SCP)

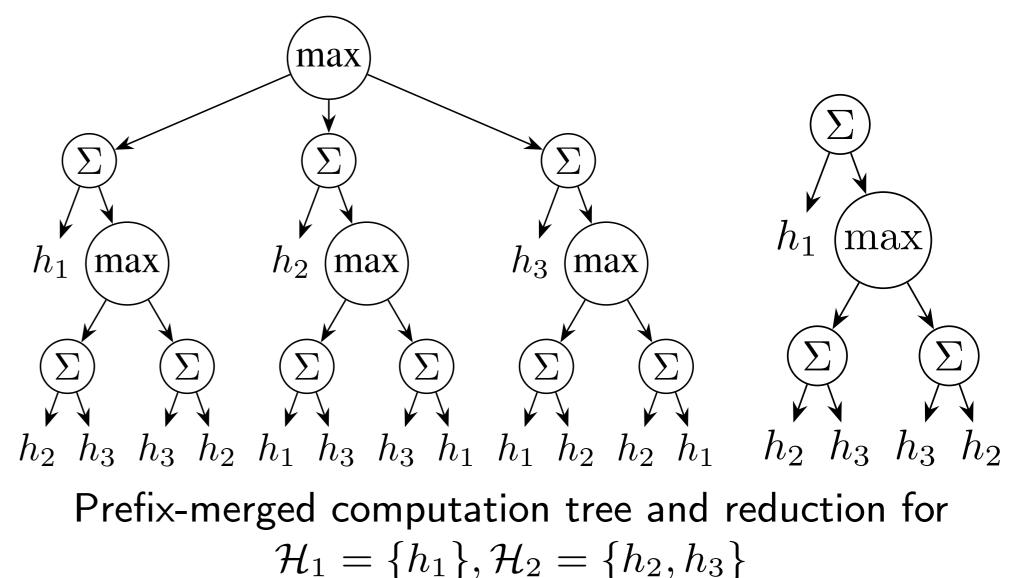
- partition costs greedily following an order ω
- heuristic quality depends on order
- previous works use sampling and heuristics for finding good orders

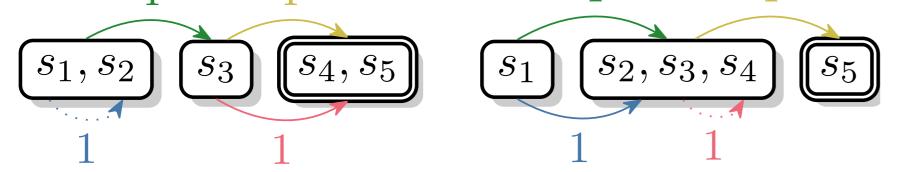
4 4 4 4

Results

- optimized computation of SCP Heuristics
- first possible computation of optimal SCP Heuristic







Problem: Factorial growth of all SCP orders **Idea:**

- Express SCP Heuristic as compact computational graph
- Use order-independence between heuristics to reduce graph size

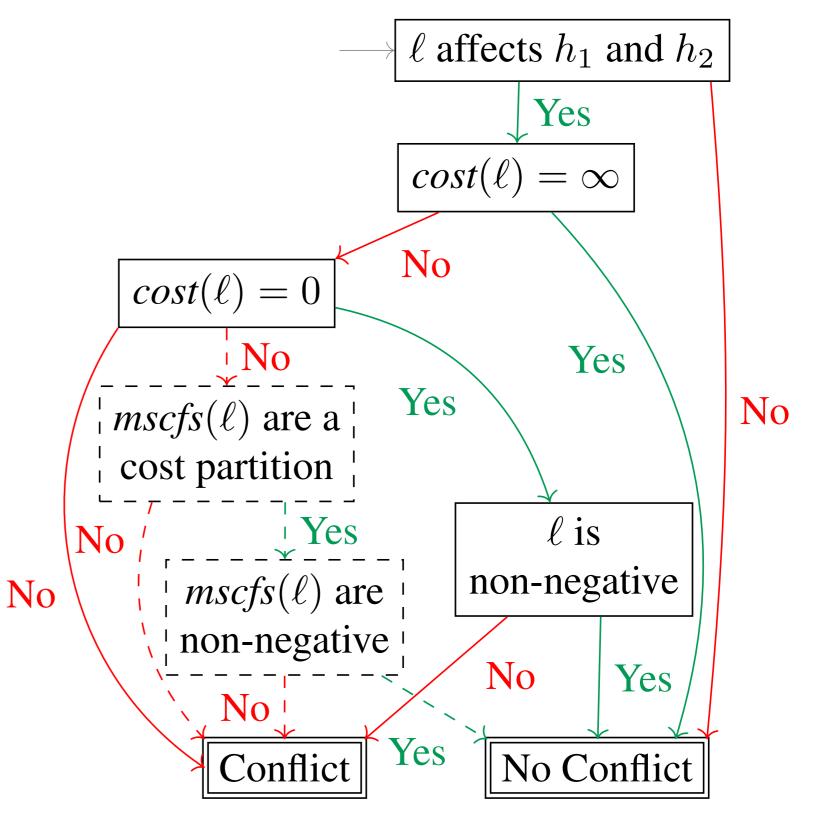
SCP Computational Graphs

Rooted directed acyclic graph with max and sum nodes More compact representation of SCP Heuristics Graphs can be reduced by eliminating equivalent orders

Reducing Graph Size

Approximations to avoid computation of orders Algorithm:

- graph G_C with heuristics as nodes
- add edge if two heuristics are in conflict



- find connected components in G_C
- build first layer of subgraph for each component
- repeat algorithm for heuristics in each component
- combine subgraphs with sum

Conflict approximation between two heuristics

$$\omega_{1} = \langle h_{1}, h_{2} \rangle, c_{h_{1}} = \langle 0, 4, 1, 1 \rangle, c_{h_{2}} = \langle 0, 0, 3, 0 \rangle$$
$$\omega_{2} = \langle h_{2}, h_{1} \rangle, c_{h_{1}} = \langle 0, 3, 0, 0 \rangle, c_{h_{2}} = \langle 1, 1, 4, 0 \rangle$$

$$h_{\omega_1}^{SCP}(s_2) = 5 + 3 = 8 \quad h_{\omega_1}^{SCP}(s_4) = 0 + 3 = 3$$
$$h_{\omega_2}^{SCP}(s_2) = 3 + 4 = 7 \quad h_{\omega_2}^{SCP}(s_4) = 0 + 4 = 4$$

