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Abstract

The uploading and sharing of facial images of individuals is on the rise in this growing age of social media. But, this exchange of images
may lead to some serious privacy threats. To preserve the identity of the individuals, several face de-identification tools have been
proposed in the past. In our work, we evaluate the privacy-preserving nature of the different disentanglement methods proposed by
Minh-Ha et al. [1] and compare them to find out which one is the best for anonymizing facial images. We have used record linkage
attacks under various settings for this evaluation. Our experiments were able to link more than 50% of the anonymized records to the
original image in some cases which exceeds an acceptable limit for privacy.

Our Evaluation Framework Results
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