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1. Motivation and Research Goals

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, and remains a leading cause of death in intensive care units
worldwide. An optimal treatment strategy is still unknown, leading to a significant variability in sepsis treatment. Recently, deep reinforcement learning have
shown promise as a decision-aiding tool for the administration of intravenous fluids and vasopressors to septic patients. However, these models are limited in
their ability to accommodate different patient profiles, and thus fail to provide personalized treatment recommendations.We propose a Multi-Head Dueling
Double Deep Q-Network (MH-DQN) model that incorporates patient characteristics to enable personalized treatment recommendations.

2. Markov Decision Process Formulation

A Markov Decision Process is the foundation of reinforcement learning,
consisting of the following four parts:

1. State Space: Patient health states St at time t.
2. Action Space: Physician actions At affecting St+1.
3. Transition Probability: Probability of St+1 given St and At.
4. Reward Function: Reward for taking At in St resulting in St+1.

Physician’s actions: Vasopressors and/or IV fluids, represented as a 5× 5
grid of maximum vasopressor dose and total IV fluid volume over 4 hours.

3. Data and Patient Profiles

• Data Source: MIMIC-III database [1].
• Clustering: Fuzzy C-Means (FCM) on temporal SOFA score features.
• Patient Profiles: Clusters represent different sepsis severity levels.

Profile Patients (n) Mortality (%)
Mild 5 954 (5 942, 5 966) 14.41% (14.33%, 14.49%)
Moderate 5 258 (5 249, 5 267) 18.67% (18.59%, 18.75%)
Severe 2 042 (2 032, 2 052) 36.02% (35.85%, 36.19%)

4. Model Architecture

We compare our MH-DQN model, with its personalized multi-head archi-
tecture, to the existing Dueling DDQN to assess performance differences.

Dueling Double Deep Q-Learning (Dueling DDQN)

• Loss Function: L(θ) = E
[
(Qtarget −Q(St, At; θ))

2
]

[2].
• Q-Target Update: Qtarget = Rt+1 + γmaxa′ Q(St+1, a

′; θ′).
• Network Structure: Separate networks estimate Qtarget , with

output streams for value and advantage.

Multi-Head Dueling DDQN (MH-DQN)

• Personalization: Enhances Dueling DDQN with a multi-head
architecture tailored to patient profiles.

• Output Weighing: Output is a weighted sum of head outputs.
• Weighting Strategies: Hard weighing uses binary weights; soft

weighing uses FCM membership scores.
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5. Off-Policy Evaluation

Off-policy evaluation assesses model performance using hospital data col-
lected under a physician’s treatment policy. Two metrics are used:

• Per-Horizon Weighted Importance Sampling (PHWIS) [3].
• Per-Horizon Weighted Doubly Robust (PHWDR) [4].

Evaluation on test sets using 50 models trained on different train-test splits.
Hard MH-DQN excels, outperforming all models in PHWIS.
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Bootstrapped metrics shown
for each profile of a median-
performing model. Hard
MH-DQN outperforms in
PHWIS and matches physi-
cian policy in PHWDR.

6. Action matrices

Policies are evaluated by comparing its action frequencies to the physician’s,
where action 0 means no drugs and higher actions indicate larger dosages.
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The hard MH-DQN policy adapts more to the patient profile, resembling
the physician’s policy for mild profile and differing more for severe profile.
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