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Motivation & Research Goals

With an increase in abundant amount of data in recent years, an increase in complexity of data from scalars to highly structured and non-linear
data can also be seen. Such data may contain confidential information and must be protected from disclosure and essential to safeguard GDPR
policies. This work aims to provide privacy preserving model to anonymize high-dimensional data maintaining the manifold structure of the data.
Manifold Learning hypothesize that real-world data lie on a low-dimensional manifold embedded in a higher-dimensional space. As the protection
of high-dimensional data is important, similarly the protection of statistical summaries of data is equally important which could reveal a lot of
information. Fréchet mean is one such operation which can be performed on a metric space, and is meaningful in the manifold setting. We show
that to find a trade-off between utility and privacy it is important to preserve the structure of data which is achieved by using Manitfold Learning.

Methods Selected Results
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Statistical summaries such as mean provides a lot of information about
a data set. It is a measure of central tendency. But when the data
possess manifold structure, arithmetic or geometric mean are not ca-
pable of providing such information. Thus, Fréchet mean generalises
the concept of centroids for any metric space.

The Manifold distance is calculated as the geodesic distance be-
tween original Fréchet Mean and anonymized Fréchet Mean, which
Is computed by minimizing the objective function:
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1 Relationship between different privacy models: Epsilon of Differen-
ne tial privacy vs K of K-Anonymity
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e We considered the problem of estimating the anonymized Fréchet
mean lying on a manifold. We used K-Anonymity !l and Differential
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the manifold structure of data, and provided a comparative analysis.

e To emphasize the importance for preserving the manifold struc- Evaluation to understand the importance of Manifold Learn-
ture of data we performed additional experiments. We used two ing

manifold learning techniques such as ISOMAP and LLE to pre-
serve the manifold structure of data and then anonymized using Dataset (D) D(n,p) Algorithm | Accuracy | Precision
K-Anonymity . We compared this with the approach that directly M-ISOMDAV | 9917 | 99.18
anonymizes the data using K-Anonymity without preserving the RNA 800 x 20531 | M-LLEMDAV | 58.12 50 3
manifold structure!?.

M-MDAV 90.10 90.12
M-ISOMDAV 77.79 76.82

M-LLEMDAV 85.13 86.10
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