
Visualizing Overlapping Biclusterings
and Boolean Matrix Factorizations
THIBAULT MARETTE · PAULI MIETTINEN · STEFAN NEUMANN

MOTIVATION
Finding biclusters (sets of items closely related to
each other) is a well-studied problem
Visualization helps assessing outputs of
biclustering algorithms

Research Questions:

How can we visualize a bipartite graph given a
set of biclusters?
Can we define metrics to compare visualizations?

Figure 1: Visualization of the same biclustering using
permutation from ADVISER [2] (top) and from our
TSP-based heuristic (bottom).

Related work. Jin et al. [3] and Colantonio et al. [2]
studied the visualization of a given set of
overlapping biclusters as a biadjacency matrix.

Colantonio et al. [2] proposed a greedy heuristic
called ADVISER to minimize gaps in the
visualization of each bicluster.
However, similar but non-overlaping biclusters
are not visualized close to one another.

PRE-PROCESSING
Problem setup. Let G = (R ∪ C,E) a bipartite
graph, and ((R1, C1), . . . , (Rk, Ck)) a biclustering of
G, where Ri ⊆ R and Ci ⊆ C for all i. We Compute
a row permutation σR and a column permutation
σC of the biadjacency matrix A to optimally visualize
the biclustering. In the visualization, we set
AσR(r),σC(c) = 1 iff (r, c) ∈ E.

Observation. The pre-processing stems from:

Similar items should be close to each other in the
final permutation

⇒ Rows and columns from the same clusters
should be contiguous in the final permutation.

We partition the rows and columns into row blocks
and column blocks. We ensure that each cluster can
be expressed as the union of a set of blocks.

Formally, for r ∈ [m], let clustersR(r) = {i : r ∈ Ri}
denote the set of indices of all row clusters that
contain row r.

Now, the row block of r
is given by blockR(r) =

{r′ : clustersR(r) =

clustersR(r
′)}, i.e., it is

the set of all rows r′ that
are contained in exactly
the same row clusters
as r.

⇒ We only have to find permutations of the row and
column blocks.

OBJECTIVE FUNCTIONS

The three criteria that we study are as follows:

Proximity: Rows and
columns of each bicluster

should be close to each
other.

Sprox(Ri, Ci) =[max{Ri} −min{Ri}+ 1]

·[max{Ci} −min{Ci}+ 1]

Size of the consecutive
cluster areas: Rows and

columns of each bicluster
should form large
consecutive areas.

SclArea(Ri, Ci) =
∑

(X,Y)∈cons(Ri)×cons(Ci)

|X × Y |2.

Size of uninterrupted
areas: Areas that belong
to biclusters should form
large uninterrupted areas
(not limited to individual

biclusters).

SR
uninter(b

R
i) =

∑
Y ∈cons(nonzero(bRi))

|bRi × Y |2.

All three objective functions capture a different
aspect of a good visualization
They represent a global state of the visualization
They are costly to compute

DEMERIT
We introduce demerit as a fast-to-compute local dis-
tance function between two blocks. If two blocks are
dissimilar, their demerit is high.

Formally, the demerit for row block bR and column
blocks bCi and bCj is given by:

demerit(bR; bCi , b
C
j) =


|bR| · (|c1 ∪ c2|+ 1)

if c1 = ∅ or c2 = ∅,
|bR| · (|c1 ∪ c2| − |c1 ∩ c2|)

otherwise,

where c1 = clustersR(b
R) ∩ clustersC(b

C
i), and c2 =

clustersR(b
R) ∩ clustersC(b

C
j).

To measure the demerit of the column block permuta-
tion σC , we set

demerit(σC) =
∑

bR∈BR

t−1∑
i=1

demerit(bR; bCσC(i), b
C
σC(i+1)).

The demerit is easier to optimize than the other
three objective functions
Can be computed locally
Only have to consider consecutive pairs of col-
umn blocks bCσC(i) and bCσC(i+1)

Defined for all pairs of row and column blocks

TSPheuristic. We use a TSP solver in order to find
a permutation minimizing demerit between blocks.
The permutation returned by the TSP solver is the
permutation used in the visualization.

EXPERIMENTS

The code of our
visualization tool is

open-source and available
online.

github.com/tmarette/biclusterVisualization

We picked our color scheme using colorbrewer [1]
to ensure readability and accessibility.

Ordering

0 100 200 300 400
0

100

200

300

400

0 100 200 300 400
0

100

200

300

400

Color scheme

Qualitative Evaluation. We notice an increase in
the quality of the visualization by comparing our
method to the baseline algorithm ADVISER.

ADVISER Our method
Increased size of uninterrupted areas.

ADVISER Our method
Increased coherence.

Quantitative Evaluation. We gathered objective
functions values of all methods across multiple
datasets, using varying numbers of clusters.

clArea uninter prox demerit visualizationCost
Objective function

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

re
la

tiv
e

sc
or

e

greedyProximity
greedyConsecutiveClustersArea

greedyUninterruptedArea
greedyDemerit

TSPheuristic
ADVISER

⇒ Minimizing the demerit achieves very high qual-
ity across all objective functions.

ACKNOWLEDGEMENT
This work was partially supported by the Wallen-
berg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallen-
berg Foundation.

REFERENCES
[1] C. A. Brewer, M. Harrower, B. Sheesley, A. Woodruff, and D. Heyman.

Colorbrewer 2.0: color advice for cartography. The Pennsylvania State
University. http://colorbrewer2. org/.

[2] A. Colantonio, R. Di Pietro, A. Ocello, and N. V. Verde. Visual role
mining: A picture is worth a thousand roles. IEEE Trans. Knowl. Data
Eng., 24(6):1120–1133, 2011.

[3] R. Jin, Y. Xiang, D. Fuhry, and F. F. Dragan. Overlapping matrix pattern
visualization: A hypergraph approach. In IEEE Int. Conf. Data Min.,
pages 313–322, 2008.

