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Background

Recently, both optimal transport and Schrödinger bridge problems have found foundational value for many methods within the bur-
geoneing field of generative diffusion models. The relation between the two problem types is a widely researched topic.
Schrödinger Bridges can be viewed as an analog of, or alternative to, entropic regularization for optimal transport problems. Like
entropic regularization, dynamic Schrödinger Bridges (using Brownian priors) converge to the dynamic OT-solution as the regularization
parameter goes to zero. Detailed information of such convergence can be obtained using the theory of large deviations.
Recent work has derived large deviation principles for both the static and dynamic Schrödinger Bridge problems. In this talk we show
how such results can be obtained using the well-established weak convergence approach to large deviations. This systematic approach
opens the door for generalizing the results to settings found in the machine learning literature. We provide an overview over current and
anticipated results for common Schrödinger bridge setups from machine learning, with varying domains and prior processes.

Schrödinger bridges / OT

For fixed ε consider the diffusion Xε given as the solution of

dXε(t) = f(t,Xε(t))dt+
√
εg(t)dW (t), t ∈ [0, 1]

Xε(0) = ξ ∼ µ0,
(1)

This gives rise to a path measure Q on C([0, 1] : Rd). The Schrödinger
bridge problem is to find the path measure P minimizing

min
P:P0=µ0,P1=µ1

R(P ||Q) = EP
[
log

(
dP
dQ

)]
. (2)

When f = 0 and g = 1, the Schrödinger bridge problem is equivalent to the
entropically regularized optimal transport problem:

min
P∈Π(µ0,µ1)

∫ 1
2 |x− y|2 P(dx, dy) + εR(P ||µ0 ⊗ µ1). (3)

Computational advances

Figure 1: Diffusion Schrödinger bridges on synthetic and real data.

Figure 2: Diffusion Schrödinger bridges on CelebA.

Large deviations

The choice of the Brownian motion reference measure makes the prob-
lem equivalent to entropic optimal transport, and as ε → 0, the dynamic
Schrödinger bridge converges to the dynamic optimal transport solution.
We are interested in characterizing the speed of this convergence using large
deviations theory. I.e. we want a rate function I : C([0, 1] : Rd) → R such
that

lim inf
ε↓0

ε logPε(F ) ≥ − inf
φ∈F

(φ) for all closed F ⊆ C([0, 1] : Rd),

lim sup
ε↓0

ε logPε(G) ≤ − inf
φ∈G

(φ) for all open G ⊆ C([0, 1] : Rd).
(4)

Results

Theoretical
Theorem 0.1 (Bernton, Ghosal, and Nutz, 2022). The static Schrödinger
bridges {Pε

01}ε∈(0,1) satisfies a large deviation principle, with the rate func-
tion

IEOT(x, y) = 1
2 |y − x|2 − ψc(y) − ψ(x), (5)

where ψ is a Kantorovich potential of the optimal transport problem, and ψc

its c-transform. c(x, y) = 1
2 |y − x|2.

We also know that Brownian bridges satisfy a large deviation principle. This
is classical.

Theorem 0.2. The ε-Brownian bridge {Bε,xy} satisfies an LDP, as ε ↓ 0
with the rate function

Ixy(φ) = 1
2

∫ 1

0
|φ′(t)|2dt−1

2 |y−x|2. (For φ : (φ(0), φ(1)) = (x, y), otherwise ∞).

(6)

Can we combine the two results?

Definition 0.3. The LDP (stated as a Laplace principle) is said to be uniform
on compacts if for any bounded continuous F : C([0, 1] : Rd) → R, we
have

lim
ε↓0

−ε logE[exp −1
ε
F (Bε,(xε,yε))] = inf

φ∈C([0,1]:Rd)
F (φ) + I(φ), (7)

whenever (xε, yε) → (x, y).
(actually a condition for it).

This has been shown by Kato 2024 and again by us. Restating this result
in the variational framework is our main contirubtion so far. This bring the
result closer to a more general setting where we consider general SDE.

Theorem 0.4 (Kato, 2024). The dynamic Schrödinger bridges {Pε}ε∈(0,1)
satisfies a large deviation principle, with the rate function

I(φ) = 1
2

∫ 1

0
|φ′(t)|2dt− ψc(y) − ψ(x), (8)

where ψ is a Kantorovich potential of the optimal transport problem, and ψc

its c-transform. c(x, y) = 1
2 |y − x|2.

Experimental
Nothing yet.
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Results cont.

Langevin diffusion-based sampling:

dXt = −∇V (Xt)dt+
√

2β−1dWt, V (x) := − (log q(x) + T (x)) (9)

Figure 3: Q-samples X0 (leftmost) and XtH
after simulating (9) with dif-

ferent β.


